“为 PHP 应用提速、提速、再提速!” 系列文章的 第 1 部分
演示了如何使用 XCache(PHP 操作码缓存)
加速整个站点。XCache(仅是少数几种缓存包中的一种)保留了编译过程的输出,去掉了其他冗余的工作。只要页面没有发生变化,缓存后的页面就能够胜任
代理的作用。当页面发生变化时,缓存后的页面就会变为无效并被替换掉。
操作码缓存 —— 以及一个操作码优化器,通常由相同的包提供 —— 是一种加快站点响应的低成本技术。很多缓存包是免费的,并且是开源的,无需改变任何代码即可从中受益。
当
然,在某些应用程序中,相比较实际的执行时间,将 PHP 源代码文件翻译为其相应的操作码所需的时间微不足道。连接到远程数据库服务器,使用低效的
SQL
语句进行查询,以及其他大量解析和操作数据的工作都非常的繁琐,也因此增加了开销,甚至产生浪费。良好的网络设计和灵巧的数据库结构可以使时间冗长和查询
缓慢的情况有所改善,如果需要的话还可以向友好的专家请求帮助。但是,如果代码运行缓慢,您可能更希望自己处理。
但是从何开始呢?正如人们普遍认为的,在代码完成前调试代码的做法很不明智 —— 因为代码的首次实现可能会非常的迅速。当代码正确且能实现相应的功能时,不管其表面上看起来运行缓慢还是实际如此,首先要做的就是对其性能进行测试或基准测试。不执行这样的诊断而尝试去优化代码无疑是在黑暗中摸索。
一个简单的性能指标是挂钟时间(wall clock time),
或测量页面请求与完成呈现之间的实际延迟。对于某些情况 —— 比如在您自己的工作站本地运行的 Web 服务器、数据库和浏览器 ——
挂钟时间能够提供信息。然而,挂钟时间对于其他大多数情况而言并无实际意义,比如网络延迟时间、活动的 Web 服务器或者活动的数据库。
一种更精确的测量 —— 甚至可以测量运行单个源代码语句的时间 —— 可以采用代码分析器。
分析器通常被实现为 PHP 运行时引擎的扩展,记录语句开始和结束的 delta、记录程序开始和结束之间的 delta
并捕获对来到的请求形成响应的总时间。有了这种垂直度,就可以将语句、循环、函数、类或者是运行缓慢的库作为分析目标。如果不是时间而是内存使用出现了问
题,那么一个优秀的分析器还可以显示组件的内存占用情况。
PHP 的一个较流行的分析器是 Xdebug,它还为交互地调试 PHP
应用程序提供了服务器挂钩(hook)。(参见“调试的更好方法”以了解更多信息。该系列的另一部分将探讨高级交互式调试。) Xdebug
很容易从源代码构建,将其作为 Zend 扩展进行安装也非常简单。(现在已有针对某些平台的二进制文件。)当就绪后,对基于 PHP
页面的每个请求都将生成可在 KCacheGrind 中查看的数据集。
构建并安装 Xdebug
如果具备了 PHP 实用工具 phpize 和 php-config ,
而且具有对系统的 php.ini 配置文件的访问权,那么安装和设置 Xdebug 只需几分钟的时间。下面给出的指导说明针对
Linux?,不过在 Mac OS X 上的安装步骤实际上与此类似。(您可以从 Xdebug Web 站点找到针对 Microsoft?
Windows? 的 Xdebug 预编译版本。)
Xdebug 的最新版本为 V2.0.0RC3(最终版本 V2.0.0 在您阅读此文时也许已经可用)。下载并解包 tarball,然后切换到源代码的子目录。确保 phpize 和 php-config 位于 shell 的 PATH,准备使用 phpize 进行构建。
清单 1. 设置 Xdebug
$ wget http://www./files/xdebug-2.0.0RC3.tgz $ tar xzf xdebug-2.0.0RC3.tgz $ cd xdebug-2.0.0RC3/xdebug-2.0.0RC3 $ phpize Configuring for: PHP Api Version: 20020918 Zend Module Api No: 20020429 Zend Extension Api No: 20050606
|
phpize 的产品是一个脚本 —— 名为配置 —— 它对余下的构建过程进行配置。要构建 Xdebug,在 make 后紧接着输入 ./configure 即可。
清单 2. 构建 Xdebug
$ ./configure checking build system type... i686-apple-darwin8.8.1 checking host system type... i686-apple-darwin8.8.1 checking for egrep... grep -E ... $ make ... Build complete. (It is safe to ignore warnings about tempnam and tmpnam).
|
make 命令生成 Xdebug 扩展,xdebug.so。剩下的工作就是使用 sudo make install 进行安装。
$ sudo make install Installing shared extensions: /usr/lib/php/extensions/no-debug-non-zts-20020429/
|
注: 如果在终端窗口中运行最后一个命令,请选择并复制最后一步中发出的目录。在下一个步骤中将会用到它。
最后,要使配置数据可视化,必须使用 KCacheGrind 和 GraphViz 。包含 K Desktop Environment (KDE)的 Linux 发行版很可能已经含有了 KCacheGrind 和 GraphViz 。如果没有包含,适合您所使用的 Linux 的那些版本也不难找到。Debian 用户可以使用 Advanced Packaging Tool (APT) 快速安装 KCacheGrind 和 GraphViz 以及所有包的依赖关系。
清单 3. 安装 KCacheGrind
$ apt-cache search kcachegrind valgrind-callgrind - call-graph skin for valgrind kcachegrind - visualisation tool for valgrind profiling output kcachegrind-converters - format converters for KCachegrind profiling visualisation tool $ apt-cache search graphviz graphviz - rich set of graph drawing tools graphviz-dev - graphviz Libs and Headers against which to build applications graphviz-doc - additional documentation for graphviz libdeps-renderer-dot-perl - DEPS renderer plugin using GraphViz/dot ... $ sudo apt-get install kcachegrind graphviz ...
|
如果没有将 KDE 安装到系统中,KCacheGrind 、GraphViz 以及所有必要的内容将占用大约 90 MB 的磁盘空间。
配置 Xdebug
安装了 Xdebug 扩展后,就可以准备启用和配置该扩展了。在文本编辑器中打开 php.ini,并添加以下代码行。
清单 4. 启用和配置该扩展
zend_extension = /usr/lib/php/extensions/no-debug-non-zts-20020429/xdebug.so xdebug.profiler_output_dir = "/tmp/xdebug/" xdebug.profiler_enable = Off xdebug.profiler_enable_trigger = 1
|
第一行 zend_extension 加载 Xdebug 扩展。第二行命名放置分析器输出的目录。如果需要的话,创建命名的目标并更改其模式以允许用户对 Web 服务器进行写访问。
第三行禁用了分析器。然而,第四行将在设置 HTTP GET 或 POST 参数 XDEBUG_PROFILE 时启用分析器。(如果您希望一直使用分析器,在第三行代码中将 Off 更改为 On 。)
添加这几行代码并验证了输出目录是可写的,然后重新启动 Web 服务器。对于其他 PHP 扩展,要验证 Xdebug 是否安装并可用,可以创建一个简单的骨架 PHP 程序来调用 phpinfo() 并查看结果。应该能够看到类似于图 1 所示的内容。(为简便起见,省略了完整输出的部分内容。)
图 1. Phpinfo 指明 Xdebug 是否已安装
您还可以向下滚动到 Zend 徽标。如果正确安装并配置了 Xdebug,它将显示在徽标的旁边。
使用分析器
要分析代码,只需将浏览器指向 PHP 应用程序即可。如果您将分析器设置为对每个触发逐个解决的方式,将 XDEBUG_PROFILE=1 追加到 URL 中,或者,像下面一样,将参数嵌入到表单中。
作为一个示例,我们来分析一下这个简单的 ACME Fibonacci Maker,fibonacci.php,如清单 5 所示。为方便起见,将 XDEBUG_PROFILE 参数设置在表单的隐藏变量内。(当代码投入生产时,很可能将禁用 Xdebug,呈现这个变量将不会造成什么损失。)
清单 5. Fibonacci.php
<?php function fib($nth = 1) { if ( $nth < 2 ) { return( $nth ); } return( fib( $nth - 1) + fib( $nth - 2 ) ); } ?> <html> <head> <title>ACME Fibonacci Maker</title> </head> <body> <h2>Try the ACME Fibonacci Maker!</h2> <form action="fibonacci.php" method="POST"> <input type="hidden" name="XDEBUG_PROFILE" value="1" /> Enter a number: <input type="text" name="n"></input> </form> <hr />
<?php if ( ! empty( $_REQUEST[‘n‘] ) ) { $n = $_REQUEST[‘n‘] % 10; $suffix = array( 1 => "st", 2 => "nd", 3 => "rd" ); if ( $_REQUEST[‘n‘] < 4 || $_REQUEST[‘n‘] > 20 ) { $suffix = $suffix[$n]; } else { $suffix = ‘th‘; } echo ‘<p>The ‘ . $_REQUEST[‘n‘] . $suffix .‘ Fibonacci number is ‘; echo fib( $_REQUEST[‘n‘] ) . ‘</p>‘; } ?> </body> </html>
|
将浏览器指向 http://localhost/fibonacci.php(或者合适的 URL)并输入数字 —— 比如,16。其结果 —— Fibonacci 系列的第 16 个元素 —— 如图 2 所示。
图 2. 示例 Fibonacci 应用程序
如果将分析器输出目录中的内容(名为 php.ini)列出来的话,应该能看到类似 cachegrind.out.951917687 这样名称的文件。cachegrind.out. 前缀是固定的。默认情况下,数值后缀是目录路径到 fibonacci.php 文件的 CRC32 散列。因此,如果每一个应用程序都位于自己的目录,那么每个程序的输出将根据文件名而被分隔。(如果您更喜欢将输出与时间相关联,将下面这行代码:
xdebug.profiler_output_name = timestamp
|
添加到 php.ini。)
从终端窗口启动 KCacheGrind 并打开 cachegrind.out.951917687。将立即打开一个类似于图 3 的新窗口。
图 3. KCacheGrind 应用程序
单击 Callees 选项卡,双击源代码中突出显示的行,并从 Grouping 列表选择 Source File 。所看到的视图应变为类似图 4 所示的内容。
图 4. 查看结果
正如您预期的一样,实际上全部的处理时间(70,989 毫秒的 99.87%)都花费在 3193 次对 fib() 函数的调用上了。要加快该应用程序(随着进一步执行 Fibonacci 序列,程序会随之变慢),应该避免重新计算 Fibonacci 数字这样代价高昂的重复工作。事实上,ACME Fibonacci Maker 能够很好地进行计算重用。
下面展示了 fib() 函数的优化版本。新的版本用内存换来了时间上的节省,因为它保留了中间的计算以便以后使用。图 5 展示了分析结果:与上次的 3192 次函数调用相比,这里仅需要 30 次调用(并且只有一半的调用需要计算结果),而时间则减少为只有 20 毫秒。
清单 6. 更新了的 fib() 函数
function fib($nth = 1) { static $fibs = array();
if ( ! empty ($fibs[$nth] ) ) { return( $fibs[$nth] ); } if ( $nth < 2 ) { $fibs[$nth] = $nth; } else { $fibs[$nth - 1] = fib( $nth - 1 ); $fibs[$nth - 2] = fib( $nth - 2 ); $fibs[$nth] = $fibs[$nth - 1] + $fibs[$nth -2]; } return( $fibs[$nth] ); } ?>
|
图 5. 加快了的 Fibonacci 函数
虽然单次运行应用程序能够指出一些问题(可以试试上面原始的应用程序中的 Fibonacci 序列的第 50 个元素 ),通常,还是需要通过几次调用收集统计信息以及查看模式。
如果保留默认的 “crc32” 命名模式,每次运行 fibonacci.php 时,将重写数据文件。然而,可以通过在 php.ini 中设置 xdebug.profiler_append = 1 改变这种行为并将后续运行追加到相同的文件。更改之后重新启动 Web 服务器。
图 6 显示了三次运行 Fibonacci Maker 之后数据合计的示例。总时间稍大于两秒;其中 99.97% 的时间花费在了 fib() 上。图 6 显示了 Call Graph 选项卡,它由 GraphViz 的 dot 工具生成。关于 KCacheGrind 的具体用法不在本文讨论的范围之内,但是可以从网上获得其完整的文档。KCacheGrind 可以以很多种方法对数据进行交叉分析,根据您希望解决的问题选择合适的方法。
图 6. 合计分析数据
|
调试的更好方法
除
了分析 PHP 应用程序,还可以在发生错误并进行交互式调试时,配置 Xdebug
扩展(如其名字暗示的一样)来提供详细的栈跟踪和错误消息。栈跟踪和错误消息可以指出错误的原因,而交互式调试允许每次逐步调试代码中的一条指令,查看程
序变量的类型和值,并检查所有的 PHP 超全局变量,包括进来的请求参数。
本系列的下一篇文章将具体介绍交互式调试。同时,您可以启用几个 Xdebug 特性来说明应用程序在发生错误时的状态:
- 无论何时只要应用程序出现错误,设置
xdebug.default_enable=On 显示栈跟踪。如果您已经花费时间安装了 Xdebug,那么只要进行代码开发就启用这个特性。
- 还可以设置
xdebug.show_local_vars=1 来进一步显示最顶部范围内的所有变量。
-
xdebug.var_display_max_children 、xdebug.var_display_max_data 和 xdebug.var_display_max_depth> 是相关的三个设置,分别用来控制因 xdebug.show_local_vars 的使用而显示的变量的属性数、字符串长度和嵌套深度。
可以在 Xdebug Web 站点找到更多信息。
|
|
分析类
如
果没有具体的代码,那么很难演示具有意义的分析,下面这个示例是十分典型的代码,展示了从中所能获得的信息。清单 7
显示了一个装配玩具火箭的应用程序(人为设计)。这种玩具火箭由几个部分组成,生产每一个部分都需要一定的时间。在 PHP
中,使用类代表每个组成部分,使用实例方法表示每个部分的构造时间。您可以将这个玩具看作是一个应用程序,并把每个部分看作是该应用程序的功能。
清单 7. 模拟玩具装配的一组 PHP 类
<?php define( ‘BOOSTER‘, 5 ); define( ‘CAPSULE‘, 2 ); define( ‘MINUTE‘, 60 ); define( ‘STAGE‘, 3 ); define( ‘PRODUCTION‘, 1000 ); class Part { function Part() { $this->build( MINUTE ); } function build( $delay = 0 ) { if ( $delay <= 0 ) return; while ( $delay-- > 0 ) { } } } class Capsule extends Part { function Capsule() { parent::Part(); $this->build( CAPSULE * MINUTE ); } } class Booster extends Part { function Booster() { parent::Part(); $this->build( BOOSTER * MINUTE ); } } class Stage extends Part { function Stage() { parent::Part(); $this->build( STAGE * MINUTE ); } } class SpaceShip { var $booster; var $capsule; var $stages; function SpaceShip( $numberStages = 3 ) { $this->booster = new Booster(); $this->capsule = new Capsule(); $this->stages = array(); while ( $numberStages-- >= 0 ) { $stages[$numberStages] = new Stage(); } } } $toys = array(); $count = PRODUCTION; while ( $count-- >= 0 ) { $toys[] = new SpaceShip( 2 ); } ?>
<html> <head> <title> Toy Factory Output </title> </head> <body> <h1>Toy Production</h1> <p>Built <? echo PRODUCTION . ‘ toys‘ ?></p> </body> </html>
|
运行这些代码将生成一个新的数据文件。同样,将数据加载到 KCacheGrind 。如果切换到 Source 和 Call Graph 选项卡,将看到类似图 7 所示的视图。
图 7. 太空船应用程序的配置文件
Flat
Profile
窗格(左面)显示了应用程序调用的所有函数(方法)。最左面的列展示了近似的累计总数,第二列展示了每种方法的单独测试,第三列列出了调用该方法的次数。
在调用图表中使用有颜色的方块反映图表内容,这非常方便,能够很容易地将事件序列与其花费的时间关联起来。
很明显,构建阶段所使用的时间代价最昂贵。构建每一部分所需的系统开销(使用 Part 的构造器表示)次之。再看一下 PHP 自身的 define() 函数,它只花费了很少的开销。
最后,还可以查看内存的使用情况。从靠近顶部的下拉菜单中选择 Memory 和 Class,然后切换到顶部以及底部的 Types 和 Caller Map 选项卡。您看到的屏幕应该类似图 8。
图 8. 太空船应用程序的内存使用情况
找回周期
和
其他众多 PHP 扩展一样,Xdebug 容易构建、安装快捷且易于配置 —— 所有这些工作 10 分钟内即可完成。如果您已经优化了
Apache 安装并且对应用程序进行了缓存,但是性能仍然很差,那么可以考虑一下代码的运行。算法是否有效?代码是否过于复杂?是否重复实现了
PHP 已提供的函数?
当然,如果不能判断出应用程序的瓶颈所在,那么就必须进行查找并加以修复。不要只凭猜测 —— 要进行分析!您可能会惊讶于宝贵的计算周期是如何被轻意耗费掉的。
并且永远不要忘记:要在生产服务器中禁用 Xdebug,因为启用它总会增加系统开销。
参考资料
学习
|