分享

整式知识点

 家有学子 2010-12-31

整式知识点

一、知识梳理:

现实世界、其他学科、数学中的问题情境  

①整式的加减

②幂

整式及其运算

             ③整式的乘法

解决问题       ④整式的除法

二、知识要点:

1、单项式、多项式、单项式的次数、多项式的次数、整式、同类项

1.单项式

  (1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。

  注意:数与字母之间是乘积关系。

  (2)单项式的系数:单项式中的字母因数叫做单项式的系数。

  如果一个单项式,只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为—1

  (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2.多项式

  (1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。

  (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

  (3)多项式的排列:

  1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

  2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

3.整式 单项式和多项式统称为整式。

4.同类项的概念

  所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。

2、整式的加减(合并同类项)

  1.合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

  2.合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  3.合并同类项步骤:

  .准确的找出同类项。

  .逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

  .写出合并后的结果。

3、幂的运算法则:

          mn都是正整数)

           mn都是正整数)    幂的乘方:底数不变,指数相乘。

            n是正整数)  积的乘方:把积的每一个因式分别乘方,再把所得的幂相乘。

          a0mn都是正整数,且m>n) 同底数幂相除底数不变,指数相减。

            a0

           a0p是正整数)

4、整式的乘法:

单项式乘以单项式、单项式乘以多项式、多项式乘以多项式

单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。

  单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

   平方差公式:                 

完全平方公式:                                             

平方差公式:两数和与这两数差的积等于这两数的平方差。

   完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。 两数差的平方,等于这两数的平方和,减去这两积的2倍。

5、整式的除法

单项式除以单项式,多项式除以单项式

单项式与单项式相除有以下法则:单项式与单项式相除,把它们的系数,同底数幂分别相除,除数中多余的字母连同它的指数不变,作为积的形式。

单项式与多项式相除有以下法则:多项式与项式相,先用多项式的每一项除以这个单项式,再把所得的积相加。

运算顺序

  先乘除, 后加减。  诺有括号, 最先做。 同级运算,从左到右。 掌握运算顺序  不忙活!

三、考点例析:

一)、考查基本运算法则、公式等:

例1、(08佛山)计算:                 .

答案:

点评:运用多项式相乘的法则即可;应注意符号、及其合并同类项,把结果变为简略的形式;

2(08孝感)下列运算中正确的是(    )

A.;B.;C.; D.

答案:D;点评:对照相应的公式即可看出正确的答案来;

例3、08广州)下列式子中是完全平方式的是(    )

A    B; C D ;

答案:D

点评:对照完全平方公式:可以看出:

而其它三个选项都是错误的;

二)、同类项的概念

例4、 若单项式2am+2nbn-2m+2a5b7是同类项,求nm值.

   【点评】考查同类项的概念,由同类项定义可得 解出即可;求出:

所以:

三)、整式的化简与运算

5(08江西)先化简再求值

, 其中

解:  . 

时,原式

点评:在化简的过程中,可以适当的运用乘法公式、运算法则进行简便运算;

四)、定义新运算:

6(08孝感)在实数范围内定义运算“”,其规则为:

则方程的解为       .17.

点评:两次运用题目中的新运算公式:(1

2,所以:,求出:

例7、(08 宿迁)对于任意的两个实数对,规定:当时,有;运算“”为:;运算“”为:.设都是实数,若,则

点评:两次运用题目中的新运算公式,不难求出问题的答案来:

1)由:得出:

所以:2

五)整体思想的运用:

 例8、计算: 

分析:这里的底数为:,而这两个式子恰为相反数,我们可以把看做一个字母:利用负数的偶次方是正数的原则变化:两项的底数为,所以有:

解:原式===

点评:底数是多项式且以固定的形式(或者某一形式的相反数)时出现,这类幂的乘积运算问题,可以把固定的形式看做一个整体,常常变化次数是偶次的幂的底数为它的相反数,这样变化不出现“-”,便于运算;应注意变为同底数的幂的一般方法的灵活运用;

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多