初二数学下册知识点
第一章 一次函数1 函数的定义,函数的定义域、值域、表达式,函数的图像2 一次函数和正比例函数,包括他们的表达式、增减性、图像3 从函数的观点看方程、方程组和不等式第二章 数据的描述1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点条形图特点: (1)能够显示出每组中的具体数据; (2)易于比较数据间的差别扇形图的特点: (1)用扇形的面积来表示部分在总体中所占的百分比; (2)易于显示每组数据相对与总数的大小折线图的特点; 易于显示数据的变化趋势直方图的特点: (1)能够显示各组频数分布的情况; (2)易于显示各组之间频数的差别2 会用各种统计图表示出一些实际的问题第三章 全等三角形1 全等三角形的性质: 全等三角形的对应边、对应角相等2 全等三角形的判定 边边边、边角边、角边角、角角边、直角三角形的HL定理3 角平分线的性质 角平分线上的点到角的两边的距离相等; 到角的两边距离相等的点在角的平分线上。第四章 轴对称1 轴对称图形和关于直线对称的两个图形2 轴对称的性质 轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线; 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线; 线段垂直平分线上的点到线段两个端点的距离相等; 到线段两个端点距离相等的点在这条线段的垂直平分线上3 用坐标表示轴对称 点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).4 等腰三角形 等腰三角形的两个底角相等;(等边对等角) 等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一) 一个三角形的两个相等的角所对的边也相等。(等角对等边) 5 等边三角形的性质和判定等边三角形的三个内角都相等,都等于60度;三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形; 推论:直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。在三角形中,大角对大边,大边对大角。第五章 整式 1 整式定义、同类项及其合并 2 整式的加减 3 整式的乘法 (1)同底数幂的乘法: (2)幂的乘方 (3)积的乘方 (4)整式的乘法 4 乘法公式 (1)平方差公式 (2)完全平方公式 5 整式的除法 (1)同底数幂的除法 (2)整式的除法 6 因式分解 (1)提共因式法 (2)公式法 (3)十字相乘法初二下册知识点第一章 分式 1 分式及其基本性质 分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变 2 分式的运算 (1)分式的乘除 乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 (2) 分式的加减 加减法法则:同分母分式相加减,分母不变,把分子相加减; 异分母分式相加减,先通分,变为同分母的分式,再加减 3 整数指数幂的加减乘除法 4 分式方程及其解法 第二章 反比例函数 1 反比例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两支的增减性相同; 2 反比例函数在实际问题中的应用 第三章 勾股定理 1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方 2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。 第四章 四边形 1 平行四边形 性质:对边相等;对角相等;对角线互相平分。 判定:两组对边分别相等的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形; 对角线互相平分的四边形是平行四边形; 一组对边平行而且相等的四边形是平行四边形。 推论:三角形的中位线平行第三边,并且等于第三边的一半。2 特殊的平行四边形:矩形、菱形、正方形(1) 矩形性质:矩形的四个角都是直角; 矩形的对角线相等; 矩形具有平行四边形的所有性质判定: 有一个角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 推论: 直角三角形斜边的中线等于斜边的一半。(2) 菱形性质:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角; 菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形; 对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。3 梯形:直角梯形和等腰梯形 等腰梯形:等腰梯形同一底边上的两个角相等; 等腰梯形的两条对角线相等; 同一个底上的两个角相等的梯形是等腰梯形。第五章 数据的分析 加权平均数、中位数、众数、极差、方差
|