select函数用于在非阻塞中,当一个套接字或一组套接字有信号时通知你,系统提供select函数来实现多路复用输入/输出模型,原型: #include <sys/time.h> #include <unistd.h> int select(int maxfd,fd_set *rdset,fd_set *wrset,fd_set *exset,struct timeval *timeout); 参数maxfd是需要监视的最大的文件描述符值+1;rdset,wrset,exset分别对应于需要检测的可读文件描述符的集合,可写文件描述符的集合及异常文件描述符的集合。struct timeval结构用于描述一段时间长度,如果在这个时间内,需要监视的描述符没有事件发生则函数返回,返回值为0。 fd_set(它比较重要所以先介绍一下)是一组文件描述字(fd)的集合,它用一位来表示一个fd(下面会仔细介绍),对于fd_set类型通过下面四个宏来操作: FD_ZERO(fd_set *fdset);将指定的文件描述符集清空,在对文件描述符集合进行设置前,必须对其进行初始化,如果不清空,由于在系统分配内存空间后,通常并不作清空处理,所以结果是不可知的。 FD_SET(int fd,fd_set *fdset);用于在文件描述符集合中增加一个新的文件描述符。 FD_CLR(int fd,fd_set *fdset);用于在文件描述符集合中删除一个文件描述符。 FD_ISSET(int fd,fd_set *fdset);用于测试指定的文件描述符是否在该集合中。 过去,一个fd_set通常只能包含<32的fd(文件描述字),因为fd_set其实只用了一个32位矢量来表示fd;现在,UNIX系统通常会在头文件<sys/select.h>中定义常量FD_SETSIZE,它是数据类型fd_set的描述字数量,其值通常是1024,这样就能表示<1024的fd。根据fd_set的位矢量实现,我们可以重新理解操作fd_set的四个宏: fd_set set; FD_ZERO(&set); FD_SET(0, &set); FD_CLR(4, &set); FD_ISSET(5, &set); ――――――――――――――――――――――――――――――――――――――― 注意fd的最大值必须<FD_SETSIZE。 ――――――――――――――――――――――――――――――――――――――― select函数的接口比较简单: int select(int nfds, fd_set *readset, fd_set *writeset,fd_set* exceptset, struct tim *timeout); 功能: 测试指定的fd可读?可写?有异常条件待处理? 参数: nfds 需要检查的文件描述字个数(即检查到fd_set的第几位),数值应该比三组fd_set中所含的最大fd值更大,一般设为三组fd_set中所含的最大fd值加1(如在readset,writeset,exceptset中所含最大的fd为5,则nfds=6,因为fd是从0开始的)。设这个值是为提高效率,使函数不必检查fd_set的所有1024位。 readset 用来检查可读性的一组文件描述字。 writeset 用来检查可写性的一组文件描述字。 exceptset 用来检查是否有异常条件出现的文件描述字。(注:错误不包括在异常条件之内) timeout 用于描述一段时间长度,如果在这个时间内,需要监视的描述符没有事件发生则函数返回,返回值为0。 有三种可能: 1.timeout=NULL(阻塞:select将一直被阻塞,直到某个文件描述符上发生了事件) 2.timeout所指向的结构设为非零时间(等待固定时间:如果在指定的时间段里有事件发生或者时间耗尽,函数均返回) 3.timeout所指向的结构,时间设为0(非阻塞:仅检测描述符集合的状态,然后立即返回,并不等待外部事件的发生) 返回值: 返回对应位仍然为1的fd的总数。 Remarks: 三组fd_set均将某些fd位置0,只有那些可读,可写以及有异常条件待处理的fd位仍然为1。 举个例子,比如recv(), 在没有数据到来调用它的时候,你的线程将被阻塞,如果数据一直不来,你的线程就要阻塞很久.这样显然不好. 所以采用select来查看套节字是否可读(也就是是否有数据读了) 步骤如下—— socket s; ..... fd_set set; while(1) { FD_ZERO(&set);//将你的套节字集合清空 FD_SET(s, &set);//加入你感兴趣的套节字到集合,这里是一个读数据的套节字s select(0,&set,NULL,NULL,NULL);//检查套节字是否可读, //很多情况下就是是否有数据(注意,只是说很多情况) //这里select是否出错没有写 if(FD_ISSET(s, &set) //检查s是否在这个集合里面, { //select将更新这个集合,把其中不可读的套节字去掉 //只保留符合条件的套节字在这个集合里面 recv(s,...); } //do something here } 理解select模型的关键在于理解fd_set,为说明方便,取fd_set长度为1字节,fd_set中的每一bit可以对应一个文件描述符fd。则1字节长的fd_set最大可以对应8个fd。 (1)执行fd_set set; FD_ZERO(&set);则set用位表示是0000,0000。 (2)若fd=5,执行FD_SET(fd,&set);后set变为0001,0000(第5位置为1) (3)若再加入fd=2,fd=1,则set变为0001,0011 (4)执行select(6,&set,0,0,0)阻塞等待 (5)若fd=1,fd=2上都发生可读事件,则select返回,此时set变为0000,0011。注意:没有事件发生的fd=5被清空。 基于上面的讨论,可以轻松得出select模型的特点: (1)可监控的文件描述符个数取决与sizeof(fd_set)的值。我这边服务 器上sizeof(fd_set)=512,每bit表示一个文件描述符,则我服务器上支持的最大文件描述符是512*8=4096。据说可调,另有说虽 然可调,但调整上限受于编译内核时的变量值。本人对调整fd_set的大小不太感兴趣,参考http://www./CppExplore/archive/2008/03/21/45061.html中的模型2(1)可以有效突破select可监控的文件描述符上限。 (2)将fd加入select监控集的同时,还要再使用一个数据结构array保存放到select监控集中的fd,一是用于再select 返回后,array作为源数据和fd_set进行FD_ISSET判断。二是select返回后会把以前加入的但并无事件发生的fd清空,则每次开始 select前都要重新从array取得fd逐一加入(FD_ZERO最先),扫描array的同时取得fd最大值maxfd,用于select的第一个 参数。 (3)可见select模型必须在select前循环array(加fd,取maxfd),select返回后循环array(FD_ISSET判断是否有时间发生)。 下面给一个伪码说明基本select模型的服务器模型: array[slect_len]; nSock=0; array[nSock++]=listen_fd;(之前listen port已绑定并listen) maxfd=listen_fd; while{ FD_ZERO(&set); foreach (fd in array) { fd大于maxfd,则maxfd=fd FD_SET(fd,&set) } res=select(maxfd+1,&set,0,0,0); if(FD_ISSET(listen_fd,&set)) { newfd=accept(listen_fd); array[nsock++]=newfd; if(--res=0) continue } foreach 下标1开始 (fd in array) { if(FD_ISSET(fd,&set)) 执行读等相关操作 如果错误或者关闭,则要删除该fd,将array中相应位置和最后一个元素互换就好,nsock减一 if(--res=0) continue } } 使用select函数的过程一般是: 先调用宏FD_ZERO将指定的fd_set清零,然后调用宏FD_SET将需要测试的fd加入fd_set,接着调用函数select测试fd_set中的所有fd,最后用宏FD_ISSET检查某个fd在函数select调用后,相应位是否仍然为1。 以下是一个测试单个文件描述字可读性的例子: int isready(int fd) { int rc; fd_set fds; struct tim tv; FD_ZERO(&fds); FD_SET(fd,&fds); tv.tv_sec = tv.tv_usec = 0; rc = select(fd+1, &fds, NULL, NULL, &tv); if (rc < 0) //error return -1; return FD_ISSET(fd,&fds) ? 1 : 0; } 下面还有一个复杂一些的应用: //这段代码将指定测试Socket的描述字的可读可写性,因为Socket使用的也是fd uint32 SocketWait(TSocket *s,bool rd,bool wr,uint32 timems) { fd_set rfds,wfds; #ifdef _WIN32 TIM tv; #else struct tim tv; #endif FD_ZERO(&rfds); FD_ZERO(&wfds); if (rd) //TRUE FD_SET(*s,&rfds); //添加要测试的描述字 if (wr) //FALSE FD_SET(*s,&wfds); tv.tv_sec=timems/1000; //second tv.tv_usec=timems%1000; //ms for (;;) //如果errno==EINTR,反复测试缓冲区的可读性 switch(select((*s)+1,&rfds,&wfds,NULL, (timems==TIME_INFINITE?NULL:&tv))) //测试在规定的时间内套接口接收缓冲区中是否有数据可读 { //0--超时,-1--出错 case 0: return 0; case (-1): if (SocketError()==EINTR) break; return 0; //有错但不是EINTR default: if (FD_ISSET(*s,&rfds)) //如果s是fds中的一员返回非0,否则返回0 return 1; if (FD_ISSET(*s,&wfds)) return 2; return 0; }; }
|