【数学】巧解含参不等式恒成立问题的7种方法 2012-10-11
二、主参换位法 有些含参不等式的恒成立问题,在分离参数时会遇到讨论的麻烦,或者即使能分离出参数或变量,但参数的最值却难以求出,这时可变换思维角度,即把变元与参数换个位置,再结合其他知识,往往能取得意想不到的效果.
三、数形结合法 数形结合是一种重要的数学思想方法,其要点是“见数想形,以形助数”以达到解决问题的目的,数形结合是破解含参不等式恒成立问题的又一主要方法. 四、函数性质法 五、导数分析法 六、最值定位法 七、构造函数法 “数列、不等式、推理与证明”中更多精彩内容,如数学名师为你精选的最新高考靓题、模拟新题,原创最具代表高考最新方向的“高仿题”,还有“2012高考试题点拨之推理与证明”“点击函数思想在解答数列高考题中的‘结点’”“借力函数的构造 巧证数列不等式”“三大不等式交汇性试题之高考热点探究”等.请详见《试题调研》数学第3辑,它360度全方位地对这部分知识进行解读,对高考考查的最热点进行多角度、全方位的剖析,为你的备考精准定位,让你在年年变化的高考中立于不败之地. |
|