分享

Transduction (physiology)

 htxu91 2014-01-29
It has been suggested that this article be merged with Signal transduction. (Discuss) Proposed since April 2013.

In physiology, sensory transduction is the conversion of a sensory stimulus from one form to another.

Transduction in the nervous system typically refers to stimulus alerting events wherein a physical stimulus is converted into an action potential, which is transmitted along axons towards the central nervous system where it is integrated.

A receptor cell converts the energy in a stimulus into a change in the electrical potential across its membrane.[1] It causes the depolarization of the membrane to allow the action potential to be transducted to the brain for integration.[2]

Transduction and the senses[edit]

The visual system[edit]

In the visual system, sensory cells called rod and cone cells in the retina convert the physical energy of light signals into electrical impulses that travel to the brain. The light causes a conformational change in a protein called rhodopsin. This conformational change sets in motion a series of molecular events that result in a reduction of the electrochemical gradient of the photoreceptor. The decrease in the electrochemical gradient causes a reduction in the electrical signals going to the brain. Thus, in this example, more light hitting the photoreceptor results in the transduction of a signal into fewer electrical impulses, effectively communicating that stimulus to the brain. A change in neurotransmitter release is mediated through a second messenger system. Note that the change in neurotransmitter release is by rods. Because of the change, a change in light intensity causes the response of the rods to be much slower than expected (for a process associated with the nervous system).[2]

The auditory system[edit]

In the auditory system, sound vibrations (mechanical energy) are transduced into electrical energy by hair cells in the inner ear. Sound vibrations from an object cause vibrations in air molecules, which in turn, vibrate your ear drum. The movement of the eardrum causes the bones of your middle ear (the ossicles) to vibrate. These vibrations then pass in to the cochlea, the organ of hearing. Within the cochlea, the hair cells on the sensory epithelium of the organ of Corti bend and cause movement of the basilar membrane. The membrane undulates in different sized waves according to the frequency of the sound. Hair cells are then able to convert this movement (mechanical energy) into electrical signals (action potentials) which travel along auditory nerves to hearing centres in the brain.[3]

The olfactory system[edit]

In the olfactory system, odorant molecules in the mucus bind to G-protein receptors on olfactory cells. The G-protein activates a downstream signalling cascade that causes increased level of cyclic-AMP (cAMP), which trigger neurotransmitter release.[4]

The gustatory system[edit]

In the gustatory system, our perception of five primary taste qualities (sweet, salty, sour, bitter and umami) depends on taste transduction pathways, through taste receptor cells, G proteins, ion channels, and effector enzymes.[5]

References[edit]

  1. Jump up ^ Breedlove, S.M., Rosenzweig, M.R., & Watson, N.V., Biological Psychology, 5th Edition, Sinauer Associates, Inc, Sunderland, MA, 2007
  2. ^ Jump up to: a b Silverthorn, Dee Unglaub. Human Physiology: An Integrated Approach, 3rd Edition, Inc, San Francisco, CA, 2004.
  3. Jump up ^ Eatock, R. (2010). Auditory receptors and transduction. In E. Goldstein (Ed.), Encyclopedia of perception. (pp. 184-187). Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781412972000.n63
  4. Jump up ^ Ronnett, Gabriele V., & Moon, Cheil. L (2002). "G PROTEINS AND OLFACTORY SIGNAL TRANSDUCTION". Annual Review of Physiology 64 (1). pp. 189–222. doi:10.1146/annurev.physiol.64.082701.102219.
  5. Jump up ^ Timothy A Gilbertson; Sami Damak; Robert F Margolskee, "The molecular physiology of taste transduction", Current Opinion in Neurobiology (August 2000), 10 (4), pg. 519-527

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多