分享

计算机视觉基础4——对极几何(Epipolar Geometry)

 学海无涯GL 2014-02-05

  先思考一个问题:用两个相机在不同的位置拍摄同一物体,如果两张照片中的景物有重叠的部分,我们有理由相信,这两张照片之间存在一定的对应关系,本节的任务就是如何描述它们之间的对应关系,描述工具是对极几何 ,它是研究立体视觉的重要数学方法。

  要寻找两幅图像之间的对应关系,最直接的方法就是逐点匹配,如果加以一定的约束条件对极约束(epipolar constraint),搜索的范围可以大大减小。

  先回顾简单的立体成像系统

image

对极约束的图示

image

更一般的立体成像关系:两个相机的坐标无任何约束关系,相机的内部参数可能不同,甚至是未知的。要刻画这种情况下的两幅图像之间的对应关系,需要引入两个重要的概念——对极矩阵(Epipolar Matrix)和基本矩阵(Fundamental Matrix)。

image

对极几何中的重要概念(参考下图):

极点:极点el:右相机坐标原点在左像平面上的像;极点er:左相机坐标原点在右像平面上的像

极平面:由两个相机坐标原点OlOr和物点P组成的平面

级线:极平面与两个像平面的交线,即plelprer

级线约束:两极线上点的对应关系

image

有点烦人,先转移一下话题:What would Pinhead’s eye look like close up?

image image

image

如果两个人同时看这一景物,将是什么样的呢?

image image

image

image

image

再回到对极几何图上来,通过上面几幅图示,利用对极几何的约束关系,我们可以:

1. 找到物点P在左像平面上的像点pl

2. 画出极线plel

3. 找到极平面Olplel与右像平面的交线,即得极线prer

4. 像点pl的对应点一定在极一prer上。

image

两个相机坐标系之间的关系为

image

由于R是正交矩阵,因此可写为

image

三向量共面,它们的混合积为零(混合积对应于有向体积)

image

将向量乘(叉乘)写成矩阵的形式

image

image

通过进一步的改写,可以得到左像点和右像点之间约束关系(非常简单、漂亮)

image

显然,左像点pl和右像点pr是通过矩阵E=RS来约束的,我们称矩阵E为本质矩阵(Essential Matrix),它的基本性质有:

has rank 2(秩为2)

depends only on the EXTRINSIC Parameters (R & T)(仅依赖于外部参数R和T)

 

关于本质矩阵的性质,见下一节:立体视觉基础5——本质矩阵与基本矩阵

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多