1(2011·苏州)巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点. 本题主要考查了二次函数的综合问题,在解题时要注意运用数形结合和分类讨论,把二次函数的图象与性质和平行四边形的判定相结合是本题的关键. 2(2012·湖州)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于( ) 本题考查了二次函数的最值,勾股定理,等腰三角形性质,相似三角形的性质和判定的应用,主要考查学生运用性质和定理进行推理和计算的能力,题目比较好,但是有一定的难度. 3.如图:A1,B1,C1分别是BC,AC,AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点…这样延续下去.已知△ABC的周长是1,△A1B1C1的周长是L1,△A2B2C2的周长是L2…AnBnCn的周长是Ln,则Ln= 此题考查了平面图形,主要培养学生的观察能力和分析能力 4.建立平面直角坐标系(如图所示),OA=OB,点P自点A出发沿线段AB匀速运动至点B停止,同时点D自原点出发沿x轴正方向匀速运动,在点P、D运动的过程中,始终满足PO=PD,过点O、D向AB作垂线,垂足分别为点C、E,设OD的长为x (1)求AP的长(用含x的代数式表示) (2)在点P、D运动的过程中,线段PC与BE是否相等?若相等,请给予证明;若不相等,请说明理由; (3)设以点P、O、D、E为顶点的四边形面积为y,请直接写出y与x的函数关系式,并写出自变量x的取值范围. 5.《天天伴我学数学》一道作业题.如图1:请你想办法求出五角星中∠A+∠B+∠C+∠D+∠E的值.由于刚涉及到几何证明,很多学生不知道如何求出其结果.下面是习题讲解时,老师和学生对话的情景:老师向学生抛出问题:①观察图象,各个角的度数能分别求出他们的度数吗,能的话怎么求,不能的话怎么办?学生通过观察回答:很明显每个角都不规则,求不出各个角的度数.有个学生小声的说了句:要是能把这五个角放到一块就好了?老师回答:有想法,就去试试看.很快就有学生发现利用三角形外角性质将∠C和∠E;∠B和∠D分别用外角∠1和∠2表示.于是得到∠A+∠B+∠C+∠D+∠E=∠A+∠1+∠2=180°.根据以上信息,亲爱的同学们,你能求出图2中∠A+∠B+∠C+∠D+∠E+∠F+∠G的值吗?请给予证明. 考点: 本题考查了三角形外角的性质和五边形内角和.利用三角形内角与外角的关系把所求的角的度数归结到五边形中,利用五边形的内角和定理解答. 6.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆” 只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,-3)AB为半圆直径,半圆圆心M(1,0),半径为2,则“蛋圆”的抛物线部分的解析式为 考点: 本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式、直线解析式的确定、圆的切线问题. 7.如图,已知AB∥CD,∠A=α,∠C=β,∠ABC和∠CDA的平分线交于E1,∠E1BC和∠E1DA的平分线交于E2,∠E2BC和∠E2DA的平分线交于E3,按如此方式继续下去…,用α,β的代数式表示∠BEnD的度数为 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形内角和定理. 8.如图,四边形ABCD、BEFG均为正方形, (1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明; (2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由. (3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系: 考点: 本题主要考查了正方形的性质以及全等三角形的判定与性质.综合性较强. 9.如图,?ABCD中,E、F分别为AD、BC上的点,且DE=2AE,BF=2FC,连接BE、AF交于点H,连接DF、CE交于点G, 则 (1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等. (2)引申:如果∠C≠90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由; (3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C= 此题考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,利用规律解决问题. 12.如图,已知抛物线y1=-x2+bx+c(a≤O)与直线AB:y=kx+l交于A(-4,0)、B(0,4);将抛物线y1沿y轴翻折得到抛物线y2且交x轴于点C.
(1)求直线AB与抛物线y1的表达式; (2)求抛物线y2的表达式; (3)点P是直线BC上方的抛物线y2上的动点,过点P作PQ⊥x轴交直线BC于Q,以PQ为边作正方形PQMN;设点P的横坐标为m,用含m的代数式表示PQ的长,并求出当m为何值时,正方形PQMN的周长最长; (4)在满足第(3)问的前提下,当m=1时,若点E是抛物线y1上的动点,点F是直线AB上的动点,是否存在点F,使得以PQ为边,点P、Q、E、F顶点的四边形为平行四边形?若存在,求出点F的坐标;若不存在,请说明理由. 13.如图,边长为1的两种正方形卡片如图①,卡片中的扇形半径均为1;图②是交替摆放A、B两种卡片得到的图案;若摆放这个图案共用两种卡片2015张,则这个图案中阴影部分图形的面积和为 30.如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=
(1)求抛物线的解析式; (2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分? (3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由. 14.如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=
(1)点A的坐标为 (2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围; (3)试求(2)中当t为何值时,S的值最大,并求出S的最大值; (4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值. 15.如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn-1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An-1Bn-1,A2B1∥A3B2∥A4B3∥…∥AnBn-1,△A1A2B1,△A2A3B2,…,△An-1AnBn-1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为 问题探究: (1)在旋转过程中, ①如图2,当AD=BD时,线段DP、DQ有何数量关系?并说明理由. ②如图3,当AD=2BD时,线段DP、DQ有何数量关系?并说明理由. ③根据你对①、②的探究结果,试写出当AD=nBD时,DP、DQ满足的数量关系为 (2)当AD=BD时,若AB=20,连接PQ,设△DPQ的面积为S,在旋转过程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,请说明理由. 17.已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(3,0)、C(0,3),顶点为D. (1)求抛物线的解析式; (2)在x轴下方的抛物线y=ax2+bx+c上有一点G,使得∠GAB=∠BCD,求点G的坐标; (3)设△ABD的外接圆为⊙E,直线l经过点B且垂直于x轴,点P是⊙E上异于A、B的任意一点,直线AP交l于点M,连接EM、PB.求tan∠MEB·tan∠PBA的值. 18.如图,已知∠AOB=60°,在OA上取OA1=1,过点A1作A1B1⊥OA交OB于点B1,过点B1作B1A2⊥OB交OA于点A2,过点A2作A2B2⊥OA交OB于点B2,过点B2作B2A3⊥OB交OA于点A3,…,按此作法继续下去,则OA10的值是 (1)求△AED的周长; (2)若△AED以每秒2个单位长度的速度沿DC向右平行移动,得到△A0E0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围; (3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由. 20.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O. (1)一抛物线经过点A′、B′、B,求该抛物线的解析式; (2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由. (3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.3.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由. 20.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的表达式. (2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由. (3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.. |
|