一、平行线分线段成比例定理及其推论: 1.定理:三条平行线截两条直线,所得的对应线段成比例。 2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。 二、相似预备定理: 平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例 。 三、相似三角形: 1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。 2.性质:(1)相似三角形的对应角相等; (2)相似三角形的对应线段(边、高、中线、角平分线)成比例; (3)相似三角形的周长比等于相似比,面积比等于相似比的平方。 说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。 3. 判定定理: (1)两角对应相等,两三角形相似; (2)两边对应成比例,且夹角相等,两三角形相似; (3)三边对应成比例,两三角形相似; (4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。 四、三角形相似的证题思路: 五、利用相似三角形证明线段成比例的一般步骤: 一“定”:先确定四条线段在哪两个可能相似的三角形中; 二“找”:再找出两个三角形相似所需的条件; 三“证”:根据分析,写出证明过程。 如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。 六、相似与全等: 全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系: 1.共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。 2.判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改“对应边相等”成“对应边成比例”。 |
|