一、W25Q32BV芯片简介
W25X是一系列SPI接口Flash芯片的简称,它采用SPI接口和CPU通信,本文使用的W25Q32BV容量为32M,具体特性如下:
1.1、基本特性
该芯片最大支持104MHz的时钟,供电电压范围在2.7~3.6V,SPI的片选信号CS低有效,在操作芯片的时候,
需要将/WP和/HOLD管脚接电源。
发送地址或数据到设备时,MOSI管脚数据采样在CLK的上升沿,从芯片读数据或者状态时,MISO管脚数据采样在CLK
的下降沿,所以在设置SPI的工作模式时,必须设置为MODE0或者MODE3,本文设置为MODE3。
1.2、存储空间简介
W25Q32BV总共有16384页(page),每页有256bytes,每次最大可以编程一页。在擦除上,可以一次擦除
4KB、32KB、64KB,或者擦除整个芯片。整个芯片的存储空间如下图:
W25Q32BV存储空间分为sector和block。一个sector共有4KB,一个block共有32KB。一个sector存储空间如下图:
本文共支持四种擦除方式,分别如下:
1) cmd = 0x20,sector擦除,一次可以擦除4KB。芯片共有1024个sector。
2) cmd = 0x52,半个block擦除,一次可以擦除32KB。芯片共有128个半block。
3) cmd = 0xd8,block擦除,一次可以擦除64KB。芯片共有64个block。
4) cmd = 0xC7,芯片擦除,擦除整个芯片。
1.3、状态寄存器
W25Q32BV共有两个字节的状态寄存器,我们需要关心的就是BIT0和BIT1。
BIT0:busy flag,1:busy,0:free。
BIT1:write enable latch,1:write enable,0:write disable。
1.4、操作要求
在操作W25Q32BV时,如果是写数据到芯片,则每写一个字节,都需要读取一个数据。
在从芯片接收数据时,首先往芯片写一个字节的0xff,然后就是需要读取的数据。
二、设备驱动
2.1、设备注册
在系统启动的时候,首先会对设备信息进行注册,见《Linux spi驱动分析(一)----总线驱动》中的3.1,所以编写w25q的设备
驱动程序时,首先需要对设备信息进行注册,具体内容如下:
-
#if defined(CONFIG_SPI_FLASH_W25Q)
-
static struct gsc3280_spi_info w25q_spi1_dev_platdata = {
-
.cs_type = 1,
-
.pin_cs = 87,
-
.num_cs = 1,
-
.cs_value = 0,
-
.lsb_flg = 0,
-
.bits_per_word = 8,
-
};
-
#endif
-
static struct spi_board_info gsc3280_spi_devices[] = {
-
#if defined(CONFIG_SPI_FLASH_W25Q)
-
{
-
.modalias = "spi-w25q",
-
.bus_num = 1,
-
.chip_select = 2,
-
.mode = SPI_MODE_3,
-
.max_speed_hz = 5 * 1000 * 1000,
-
.controller_data = &w25q_spi1_dev_platdata,
-
},
-
#endif
-
-
};
-
static int __init gsc3280_spi_devices_init(void)
-
{
-
spi_register_board_info(gsc3280_spi_devices, ARRAY_SIZE(gsc3280_spi_devices));
-
return 0;
-
}
-
device_initcall(gsc3280_spi_devices_init);
2.2、初始化函数
首先我们从设备注册开始,程序如下:
-
static struct spi_driver w25q_driver = {
-
.driver = {
-
.name = "spi-w25q",
-
.owner = THIS_MODULE,
-
},
-
//.id_table = w25q_ids,
-
.probe = w25q_probe,
-
.remove = __devexit_p(w25q_remove),
-
};
-
-
-
static int __init w25q_init(void)
-
{
-
return spi_register_driver(&w25q_driver);
-
}
-
static void __exit w25q_exit(void)
-
{
-
spi_unregister_driver(&w25q_driver);
-
}
-
module_init(w25q_init);
-
module_exit(w25q_exit);
由于W25Q32BV使用SPI接口,所以将其注册为SPI驱动,接下来看下探测函数w25q_probe,程序如下:
-
static int __devinit w25q_probe(struct spi_device *spi)
-
{
-
int ret = 0;
-
struct w25q_dev *w25q;
-
-
DBG("############\n");
-
DBG("w25q spi flash probe start.\n");
-
w25q = kzalloc(sizeof(struct w25q_dev), GFP_KERNEL);
-
if (!w25q) {
-
DBG("!!!!kzalloc error!\n");
-
return -ENOMEM;
-
}
-
ret = spi_setup(spi);
-
if (ret != 0) {
-
DBG("!!!!setup error!\n");
-
return ret;
-
}
-
w25q->spi = spi;
-
mutex_init(&w25q->mlock);
-
strlcpy(w25q->name, W25Q_SPI_FLASH_NAME, sizeof(w25q->name));
-
ret = alloc_chrdev_region(&w25q->devt, 0, W25Q_MAX_MINOR, "w25q");
-
if (ret < 0) {
-
DBG("!!!!%s: failed to allocate char dev region!\n", __FILE__);
-
goto err_kzall;
-
}
-
w25q->dev.devt = MKDEV(MAJOR(w25q->devt), 1);
-
cdev_init(&w25q->cdev, &w25q_fops);
-
w25q->cdev.owner = THIS_MODULE;
-
ret = cdev_add(&w25q->cdev, w25q->devt, 1);
-
if (ret) {
-
DBG("!!!!cdev add error!\n");
-
goto err_alloc;
-
}
-
w25q->class = class_create(THIS_MODULE, "w25q-spi");
-
if (IS_ERR(w25q->class)) {
-
DBG("!!!!failed in create w25q spi flash class!\n");
-
goto err_alloc;;
-
}
-
device_create(w25q->class, NULL, w25q->devt, NULL, "w25q");
-
dev_set_drvdata(&spi->dev, w25q);
-
DBG("w25q spi flash probe success.\n");
-
DBG("############\n");
-
return 0;
-
-
err_alloc:
-
unregister_chrdev_region(w25q->devt, W25Q_MAX_MINOR);
-
err_kzall:
-
kfree(w25q);
-
printk(KERN_ERR "!!!!!!w25q spi flash probe error.!!!!!!\n");
-
return ret;
-
}
说明:
1) 首先申请设备驱动结构体。
2) 调用spi_setup(spi)函数对设备信息初始化。
3) 初始化设备驱动结构体成员变量。
4) 创建/dev目录下操作文件,操作函数集为w25q_fops。
5) 将设备驱动结构体中的链表插入本文件全局链表w25q_device_list中,以便在函数操作集的open函数中找到设备驱动结构体。
remove函数是探测函数的相反过程,具体程序如下:
-
static int __devexit w25q_remove(struct spi_device *spi)
-
{
-
struct w25q_dev *w25q = dev_get_drvdata(&spi->dev);
-
-
cdev_del(&w25q->cdev);
-
unregister_chrdev_region(w25q->devt, W25Q_MAX_MINOR);
-
device_destroy(w25q->class, w25q->devt);
-
class_destroy(w25q->class);
-
kfree(w25q);
-
return 0;
-
}
2.3、操作函数集w25q_fops
操作函数集结构体具体内容如下:
-
static const struct file_operations w25q_fops = {
-
.owner = THIS_MODULE,
-
.open = w25q_open,
-
.write = w25q_write,
-
.unlocked_ioctl = w25q_ioctl,
-
.read = w25q_read,
-
.llseek = w25q_llseek,
-
.release = w25q_release,
-
};
接下来我们一一讲述。
首先看下open函数w25q_open,具体程序如下:
-
static int w25q_open(struct inode *inode, struct file *file)
-
{
-
struct w25q_dev *w25q = container_of(inode->i_cdev, struct w25q_dev, char_cdev);
-
-
if (test_and_set_bit(W25Q_BIT_LOCK_OPEN, &w25q->bit_lock)) {
-
DBG("!!!!w25q open err, busy!\n");
-
return -EBUSY;
-
}
-
file->private_data = w25q;
-
return 0;
-
}
说明:
1) 通过container_of找到在探测函数w25q_probe中定义的设备驱动结构体。
2) 测试并且设置忙标志,如果测试忙,直接忙退出。
3) 将找到的设备驱动结构体指针指向file->private_data,在函数操作集的其他函数中就可以使用设备驱动结构体了。
接下来看下写函数w25q_write(),程序如下:
-
#define W25Q_BUF_LEN 4096
-
#define W25Q_PAGE_NUM 256
-
static ssize_t w25q_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos)
-
{
-
int ret = 0;
-
u8 *buf_start, *buf_tmp, *w25q_buf;
-
struct w25q_dev *w25q= file->private_data;
-
u32 buf_size = 0, page_num = W25Q_PAGE_NUM, len = 0;
-
-
DBG("@@@@w25q write start\n");
-
buf_start = buf_tmp = kzalloc(W25Q_BUF_LEN, GFP_KERNEL);
-
w25q_buf = w25q->buf = kzalloc(page_num + 4, GFP_KERNEL);
-
if (!buf_start || !w25q_buf) {
-
DBG("!!!!kzalloc error!\n");
-
return -ENOMEM;
-
}
-
ret = mutex_lock_interruptible(&w25q->mlock);
-
if (ret) {
-
DBG("!!!!mutex lock error!");
-
goto exit_kfree;
-
}
-
len = W25Q_BUF_LEN;
-
buf_size = min(count, len);
-
if (copy_from_user(buf_tmp, user_buf, buf_size)) {
-
DBG("!!!!copy_from_user() error!\n");
-
ret = -EFAULT;
-
goto exit_lock;
-
}
-
DBG("w25q->const_addr = 0x%x\n", w25q->const_addr);
-
buf_tmp = buf_start;
-
w25q->cmd = W25X_PAGE_PROG;
-
w25q->addr = w25q->const_addr;
-
while(buf_size) {
-
w25q->buf = w25q_buf;
-
w25q->len = min(buf_size, page_num);
-
memcpy(w25q->buf + 4, buf_tmp, w25q->len);
-
ret = w25q_write_date(w25q);
-
if (ret != 0) {
-
break;
-
}
-
buf_tmp += w25q->len;
-
w25q->addr += w25q->len;
-
buf_size -= w25q->len;
-
}
-
-
exit_lock:
-
mutex_unlock(&w25q->mlock);
-
exit_kfree:
-
kfree(buf_start);
-
kfree(w25q_buf);
-
if (ret != 0)
-
DBG("!!!!w25q write error!\n");
-
else
-
DBG("w25q write success\n");
-
return ret;
-
}
说明:
1) 写函数首先申请两段内存,第一段内存用于存储从应用层复制来的待写数据,最大为4KB。第二段内存用于存储每次
往W25Q32BV写的数据。由于W25Q32BV每次最大能写256bytes,所以page_num = 256,加上4是由于每次
传输时,需要在最前面加上一个字节的命令和三个字节的地址。
2) 获取本次可以传输的最大数据长度。
3) 设置好传输的cmd和起始地址,然后进入while循环。
4) 在while循环中,获取本次可以传输的最大长度,最长为256bytes,然后将其拷贝到buf中,加上4的目的是因为buf
的前四个字节需要放置命令和地址。
5) 调用w25q_write_date(w25q)函数实现数据传输。
6) 更新变量,为下一次传输做好准备。
w25q_write_date(w25q)函数具体内容如下:
-
static void w25q_write_enable(struct w25q_dev *w25q)
-
{
-
u8 cmd = W25X_WRITE_ENABLE;
-
-
spi_w8r8(w25q->spi, cmd);
-
}
-
static int w25q_wait_null(struct w25q_dev *w25q)
-
{
-
uint8_t limit = 5;
-
-
/* wait BUSY bit clear */
-
while(((w25q_read_stat_reg(w25q) & 0x01) == 0x01) && (limit != 0)) {
-
limit--;
-
mdelay(50);
-
}
-
if (limit == 0) {
-
DBG("!!!!w25q_wait_null:time out!\n");
-
return -EBUSY;
-
}
-
else
-
return 0;
-
}
-
/*
-
* when you call this function,
-
* the w25q->cmd, w25q->len(tx date len),
-
* w25q->addr and w25q->buf(date) are OK
-
*
-
*/
-
static int w25q_write_date(struct w25q_dev *w25q)
-
{
-
int ret = 0;
-
u8 i = 0, rx = 0;
-
struct spi_message message;
-
struct spi_transfer x[(w25q->len + 4) * 2];
-
-
w25q_write_enable(w25q); //SET WEL
-
ret = w25q_wait_null(w25q);
-
if (ret != 0) {
-
DBG("!!!!w25q_write_date: wait null err!\n");
-
return ret;
-
}
-
if((w25q_read_stat_reg(w25q) & 0x02) != 0x02) {
-
DBG("!!!!state register write able is 0\n");
-
return -EBUSY; //disable write
-
}
-
-
DBG("cmd = 0x%x, addr = 0x%x\n", w25q->cmd, w25q->addr);
-
w25q->buf[0] = w25q->cmd;
-
w25q->buf[1] = ((u8)(w25q->addr >> 16));
-
w25q->buf[2] = ((u8)(w25q->addr >> 8));
-
w25q->buf[3] = ((u8)w25q->addr);
-
-
spi_message_init(&message);
-
memset(x, 0, sizeof x);
-
for (i = 0; i < (w25q->len + 4) * 2; i++) {
-
x[i].len = 1;
-
spi_message_add_tail(&x[i], &message);
-
if ((i % 2) == 0) {
-
x[i].tx_buf = w25q->buf++;
-
} else {
-
x[i].rx_buf = ℞
-
}
-
}
-
/* do the i/o */
-
ret = spi_sync(w25q->spi, &message);
-
if (ret != 0) {
-
DBG("!!!!w25q_write_date: spi_sync() error!");
-
return ret;
-
}
-
ret = w25q_wait_null(w25q);
-
if (ret != 0)
-
DBG("!!!!w25q_write_date: w25q_wait_null() error!");
-
return ret;
-
}
说明:
1) 在调用w25q_write_date(w25q)函数之前,需要首先设置好w25q->cmd, w25q->len(tx date len),
w25q->addr和w25q->buf(date)变量。
2) 设置芯片状态寄存器,使其可写。
3) 等待芯片不忙。
4) 读取芯片状态寄存器,查看其是否可写。
5) 配置发送buf,调用spi_sync(w25q->spi, &message);函数实现写数据。
6) 等待芯片不忙,退出。
接下来看下函数操作集中的ioctl函数,程序如下:
-
static long w25q_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
-
{
-
int ret = 0;
-
u32 get_value = 0;
-
struct w25q_dev *w25q= file->private_data;
-
void __user *argp = (void __user *)arg;
-
int __user *p = argp;
-
-
DBG("@@@@w25q ioctl start.\n");
-
ret = mutex_lock_interruptible(&w25q->mlock);
-
if (ret) {
-
DBG("!!!!mutex lock error!\n");
-
return ret;
-
}
-
if ((_IOC_TYPE(cmd) != W25Q_IOC_MAGIC) || (_IOC_NR(cmd) > W25Q_IOC_MAXNR)) {
-
DBG("!!!!ioc type or ioc nr error!\n");
-
ret = -ENOTTY;
-
goto exit;
-
}
-
switch(cmd) {
-
case W25Q_SECTOR_ERASE:
-
case W25Q_HALF_BLOCK_ERASE:
-
case W25Q_BLOCK_ERASE:
-
if (get_user(get_value, p)) {
-
DBG("!!!!get value error!\n");
-
ret = -EFAULT;
-
goto exit;
-
}
-
ret = w25q_erase(w25q, get_value, cmd);
-
break;
-
case W25Q_CHIP_ERASE:
-
ret = w25q_chip_erase(w25q);
-
break;
-
case W25Q_READ_DEVICE_ID:
-
ret = w25q_read_id(w25q);
-
if (ret == 0)
-
put_user(w25q->result, p);
-
break;
-
default:
-
DBG("!!!!cmd error!\n");
-
ret = -ENOTTY;
-
break;
-
}
-
-
exit:
-
mutex_unlock(&w25q->mlock);
-
if (ret != 0)
-
DBG("!!!!w25q ioctl error!\n");
-
else
-
DBG("w25q ioctl success.\n");
-
return ret;
-
}
说明:
1) 目前共支持5个命令,包括sector擦除,half block擦除,block擦除,芯片擦除和读取芯片ID。
2) 前三种擦除方式共用一个函数w25q_erase(w25q, get_value, cmd);,程序如下:
-
static int w25q_erase(struct w25q_dev *w25q, u32 num, unsigned int cmd)
-
{
-
int ret = 0;
-
u8 *buf_start;
-
-
switch(cmd) {
-
case W25Q_SECTOR_ERASE:
-
DBG("sector erase cmd\n");
-
if (num > W25Q_SECTOR_MAX) {
-
DBG("!!!!sector max is over\n");
-
return -EFAULT;
-
}
-
w25q->const_addr = num * W25Q_ONE_SECTOR_ADDR;
-
w25q->cmd = W25X_SECTOR_ERASE_CMD;
-
break;
-
case W25Q_HALF_BLOCK_ERASE:
-
DBG("half block erase cmd\n");
-
if (num > W25Q_HALF_BLOCK_MAX) {
-
DBG("!!!!half block max is over\n");
-
return -EFAULT;
-
}
-
w25q->const_addr = num * W25Q_HALF_BLOCK_ADDR;
-
w25q->cmd = W25X_HALF_BLOCK_ERASE_CMD;
-
break;
-
case W25Q_BLOCK_ERASE:
-
DBG("block erase cmd\n");
-
if (num > W25Q_BLOCK_MAX) {
-
DBG("!!!!block max is over\n");
-
return -EFAULT;
-
}
-
w25q->const_addr = num * W25Q_ONE_BLOCK_ADDR;
-
w25q->cmd = W25X_BLOCK_ERASE_CMD;
-
break;
-
}
-
DBG("w25q->const_addr = 0x%x\n", w25q->const_addr);
-
w25q->len = 0;
-
buf_start = w25q->buf = kzalloc(w25q->len + 4, GFP_KERNEL);
-
if (!buf_start) {
-
DBG("!!!!kzalloc is error\n");
-
return -ENOMEM;
-
}
-
w25q->addr = w25q->const_addr;
-
ret = w25q_write_date(w25q);
-
kfree(buf_start);
-
if (ret != 0) {
-
DBG("!!!!w25q_erase: spi write err!\n");
-
return ret;
-
}
-
DBG("w25q_erase: erase OK\n");
-
return ret;
-
}
说明:
1) 首先根据不同的擦除方式,设置命令和地址两个变量。
2) 调用w25q_write_date(w25q);函数实现数据传输。
芯片擦除函数w25q_chip_erase()如下:
-
static int w25q_chip_erase(struct w25q_dev *w25q)
-
{
-
int ret = 0;
-
u8 cmd = W25X_CHIP_ERASE;
-
-
DBG("w25q_chip_erase\n");
-
w25q_write_enable(w25q); //SET WEL
-
ret = w25q_wait_null(w25q);
-
if (ret != 0) {
-
DBG("!!!!chip_erase: wait null err!\n");
-
return ret;
-
}
-
if((w25q_read_stat_reg(w25q) & 0x02) != 0x02) {
-
DBG("!!!!state register write able is 0\n");
-
return -EBUSY; //disable write
-
}
-
spi_w8r8(w25q->spi, cmd);
-
return w25q_wait_null(w25q);
-
}
读取设备ID函数w25q_read_id()如下:
-
static int w25q_read_id(struct w25q_dev *w25q)
-
{
-
int ret = 0;
-
u8 *buf_start;
-
-
DBG("w25q_read_id\n");
-
w25q->len = 2;
-
w25q->addr = 0;
-
w25q->cmd = W25X_READ_ID_CMD;
-
buf_start = w25q->buf = kzalloc(w25q->len, GFP_KERNEL);
-
if (!buf_start) {
-
DBG("!!!!kzalloc is error\n");
-
return -ENOMEM;
-
}
-
ret = w25q_read_data(w25q);
-
w25q->buf = buf_start;
-
w25q->result = *w25q->buf << 8;
-
w25q->buf++;
-
w25q->result |= *w25q->buf;
-
kfree(buf_start);
-
if (ret != 0) {
-
DBG("!!!!w25q_read_id: w25q_read_data error!\n");
-
return ret;
-
}
-
DBG("w25q_read_id: read id OK\n");
-
return ret;
-
}
说明:
1) 首先设置好变量,申请内存
2) 调用w25q_read_data()函数实现读取数据。
w25q_read_data函数如下:
-
/*
-
* when you call this function,
-
* the w25q->cmd, w25q->len(receive len)
-
* w25q->buf(kzalloc receive) and w25q->addr are OK
-
*
-
*/
-
static int w25q_read_data(struct w25q_dev *w25q)
-
{
-
int ret = 0;
-
struct spi_message message;
-
struct spi_transfer x[(w25q->len + 4) * 2];
-
u8 i = 0, rx = 0, dumy_value = 0xff, tx_buff[4] = {0};
-
-
w25q_write_enable(w25q); //SET WEL
-
ret = w25q_wait_null(w25q);
-
if (ret != 0) {
-
DBG("!!!!chip_erase: wait null err!\n");
-
return ret;
-
}
-
if((w25q_read_stat_reg(w25q) & 0x02) != 0x02) {
-
DBG("!!!!state register write able is 0\n");
-
return -EBUSY; //disable write
-
}
-
-
DBG("cmd = 0x%x, addr = 0x%x\n", w25q->cmd, w25q->addr);
-
tx_buff[0] = w25q->cmd;
-
tx_buff[1] = ((uint8_t)(w25q->addr >> 16));
-
tx_buff[2] = ((uint8_t)(w25q->addr >> 8));
-
tx_buff[3] = ((uint8_t)(w25q->addr));
-
-
spi_message_init(&message);
-
memset(x, 0, sizeof x);
-
for (i = 0; i < 8; i++) { //cmd
-
x[i].len = 1;
-
spi_message_add_tail(&x[i], &message);
-
if ((i % 2) == 0) {
-
x[i].tx_buf = &tx_buff[i / 2];
-
} else {
-
x[i].rx_buf = ℞
-
}
-
}
-
for (i = 8; i < (w25q->len + 4) * 2; i++) {
-
x[i].len = 1;
-
spi_message_add_tail(&x[i], &message);
-
if ((i % 2) == 0) {
-
x[i].tx_buf = &dumy_value;
-
} else {
-
x[i].rx_buf = w25q->buf++;
-
}
-
}
-
/* do the i/o */
-
return spi_sync(w25q->spi, &message);
-
}
说明:
1) 在从芯片读取数据时的格式为:首先发送一个字节命令+三个字节读取地址,然后就可以接收数据了。
2) 第一个for循环发送的是命令和地址,第二个for循环是接收数据。
3) 调用此函数之前,需要设置好w25q->cmd, w25q->len(receive len),w25q->buf(kzalloc receive)和w25q->addr。
接下来看下函数操作集中的读数据函数w25q_read(),程序如下:
-
static ssize_t w25q_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos)
-
{
-
int ret = 0;
-
u8 *buf_start, *buf_tmp, *w25q_buf;
-
struct w25q_dev *w25q = file->private_data;
-
u32 buf_size = 0, read_len = 0, page_num = W25Q_PAGE_NUM;
-
-
DBG("@@@@w25q read start\n");
-
buf_start = buf_tmp = kzalloc(W25Q_BUF_LEN, GFP_KERNEL);
-
w25q_buf = w25q->buf = kzalloc(page_num, GFP_KERNEL);
-
if (!buf_start || !w25q_buf ) {
-
DBG("!!!!kzalloc error!\n");
-
return -ENOMEM;
-
}
-
ret = mutex_lock_interruptible(&w25q->mlock);
-
if (ret) {
-
DBG("!!!!mutex lock error!\n");
-
goto exit_kfree;
-
}
-
read_len = W25Q_BUF_LEN;
-
buf_size = min(count, read_len);
-
read_len = buf_size;
-
-
w25q->cmd = W25X_READ_DATA;
-
w25q->addr = w25q->const_addr;
-
DBG("w25q->addr = 0x%x\n", w25q->addr);
-
while (buf_size) {
-
w25q->buf = w25q_buf;
-
w25q->len = min(buf_size, page_num);
-
ret = w25q_read_data(w25q);
-
if (ret != 0) {
-
goto exit_lock;
-
}
-
memcpy(buf_tmp, w25q_buf, w25q->len);
-
buf_tmp += w25q->len;
-
buf_size -= w25q->len;
-
w25q->addr += w25q->len;
-
}
-
ret = copy_to_user(user_buf, buf_start, read_len);
-
ret = read_len -ret;
-
-
exit_lock:
-
mutex_unlock(&w25q->mlock);
-
exit_kfree:
-
kfree(buf_start);
-
kfree(w25q_buf);
-
DBG("w25q read stop, ret = %d\n", ret);
-
return ret;
-
}
说明:
1) 此函数需要申请两段内存空间,第一段用于存放从W25Q32BV接收到的数据,第二段用于存放每次接收的数据。
2) 设置好变量后,调用w25q_read_data(w25q)读取数据。
3) 读取完成后,将读取到的数据拷贝到应用层。
三、应用层测试
应用层测试程序如下:
-
/*
-
* first you must erase,
-
* then write, then read
-
* or you can read only
-
*
-
*/
-
#include "w25q.h"
-
-
-
int main(int argc, char **argv)
-
{
-
char str[10] = {0};
-
int fd = 0, ret = 0;
-
unsigned char buffer[BUFSIZE] = {0};
-
unsigned int i = 0, idCmd = 0, num = 0;
-
-
fd = open("/dev/w25q", O_RDWR);
-
if (fd < 0) {
-
printf("Open ADC Device Faild!\n");
-
exit(1);
-
}
-
while(1) {
-
idCmd = 0;
-
printf("please enter the cmd and num :\n");
-
scanf("%s%x", str, &num);
-
//printf("cmd = %s, idFreq = %d\n", str, idFreq);
-
if (num >= 0) {
-
if (strcmp(str, "SECTOR") == 0) {
-
idCmd = W25Q_SECTOR_ERASE;
-
ret = ioctl(fd, idCmd, &num);
-
if (ret != 0) {
-
printf("sector erase Faild!\n");
-
}
-
} else if(strcmp(str, "HALF") == 0) {
-
idCmd = W25Q_HALF_BLOCK_ERASE;
-
ret = ioctl(fd, idCmd, &num);
-
if (ret != 0) {
-
printf("half block erase Faild!\n");
-
}
-
} else if(strcmp(str, "BLOCK") == 0) {
-
idCmd = W25Q_BLOCK_ERASE;
-
ret = ioctl(fd, idCmd, &num);
-
if (ret != 0) {
-
printf("block erase Faild!\n");
-
}
-
} else if(strcmp(str, "CHIP") == 0) {
-
idCmd = W25Q_CHIP_ERASE;
-
ret = ioctl(fd, idCmd, &num);
-
if (ret != 0) {
-
printf("chip erase Faild!\n");
-
}
-
} else if(strcmp(str, "ID") == 0) {
-
idCmd = W25Q_READ_DEVICE_ID;
-
ret = ioctl(fd, idCmd, &num);
-
if (ret != 0) {
-
printf("read ID Faild!\n");
-
} else {
-
printf("ID = 0x%x\n", num);
-
}
-
} else if(strcmp(str, "READ") == 0) {
-
memset(buffer, 0, BUFSIZE);
-
printf("------------\n");
-
for (i = 0; i < WRITE_NUM; i++) {
-
if((i != 0) && ((i % 8) == 0)) {
-
printf("\n");
-
}
-
printf("0x%x ", buffer[i]);
-
}
-
printf("\n------------\n");
-
ret = read(fd, buffer, WRITE_NUM);
-
printf("\n------------\n");
-
for (i = 0; i < WRITE_NUM; i++) {
-
if((i != 0) && ((i % 8) == 0)) {
-
printf("\n");
-
}
-
printf("0x%x ", buffer[i]);
-
}
-
printf("\n------------\n");
-
} else if(strcmp(str, "WRITE") == 0) {
-
for (i = 0; i < WRITE_NUM; i++) {
-
buffer[i] = i;
-
}
-
ret = write(fd, buffer, WRITE_NUM);
-
if (ret != 0) {
-
printf("w25q write oper Faild!\n");
-
}
-
} else if(strcmp(str, "QUIT") == 0) {
-
break;
-
} else {
-
printf("wrong string\n");
-
}
-
} else {
-
printf("wrong input num(< 0)\n");
-
}
-
}/* end while(1) */
-
close(fd);
-
return 0;
-
}
说明:
1) 首先从终端接收命令内容。
2) 比较命令,然后进入不同的处理流程。
四、测试演示
4.1、读取芯片ID
4.2、读写芯片
|