分享

评价逻辑回归模型优劣的两个重要参数AIC和BIC

 LibraryPKU 2014-11-20

赤池信息量准则,即Akaike information criterion、简称AIC,是衡量统计模型拟合优良性的一种标准,是由日本统计学家赤池弘次创立和发展的。赤池信息量准则建立在熵的概念基础上,可以权衡所估计模型的复杂度和此模型拟合数据的优良性。
优先考虑的模型应是AIC值最小的那一个。

贝叶斯信息准则,BIC= Bayesian Information Criterions

The log likelihood of the model is the value that is maximized by the process that computes the maximum likelihood value for the Bi parameters. 

The Deviance is equal to -2*log-likelihood.

Akaike’s Information Criterion (AIC) is -2*log-likelihood+2*k where k is the number of estimated parameters. 

The Bayesian Information Criterion (BIC) is -2*log-likelihood + k*log(n) where k is the number of estimated parameters and n is the sample size.  The Bayesian Information Criterion is also known as the Schwartz criterion.

DTREG和最新版的SPSS都可以直接给出

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多