第五章 相交线与平行线 一、知识结构图 二、知识定义 邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。 对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。 垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 平行线:在同一平面内,不相交的两条直线叫做平行线。 同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。 内错角:∠4与∠6像这样的一对角叫做内错角。 同旁内角:∠4与∠5像这样的一对角叫做同旁内角。 命题:判断一件事情的语句叫命题。 平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。 对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。 三、定理与性质 对顶角的性质:对顶角相等。 垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角互补,两直线平行。 四、经典例题 例1 如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数。 例2 如图AD平分∠CAE,∠B = 350,∠DAE=600,那么∠ACB等于多少? 例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不 相邻的一个内角的2倍,则这个三角形各角的度数为( )。
A.450、450、900 B.300、600、900 C.250、250、1300 D.360、720、720 例4 已知如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数。 例5 如图,AB∥CD,EF分别与AB、CD交于G、H,MN⊥AB于G,∠CHG=1240,则∠EGM等于多少度? |
|