分享

【scrapy】学习Scrapy入门

 只怕想不到 2015-05-19
          Scrapy介绍

Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据。抓取网页的一般方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样。
Scrapy 使用 Twisted这个异步网络库来处理网络通讯,架构清晰,并且包含了各种中间件接口,可以灵活的完成各种需求。

整体架构

【scrapy】学习Scrapy入门


爬取流程

上图绿线是数据流向,首先从初始URL开始,Scheduler会将其交给Downloader进行下载,下载之后会交给Spider进行分析,Spider分析出来的结果有两种:一种是需要进一步抓取的链接,例如之前分析的“下一页”的链接,这些东西会被传回Scheduler;另一种是需要保存的数据,它们则被送到Item Pipeline那里,那是对数据进行后期处理(详细分析、过滤、存储等)的地方。另外,在数据流动的通道里还可以安装各种中间件,进行必要的处理。

数据流

Scrapy中的数据流由执行引擎控制,其过程如下:

Scrapy项目基本流程 默认的Scrapy项目结构

使用全局命令startproject创建项目,在project_name文件夹下创建一个名为project_name的Scrapy项目。

scrapy startproject myproject

虽然可以被修改,但所有的Scrapy项目默认有类似于下边的文件结构:

scrapy.cfg myproject/ __init__.py items.py pipelines.py settings.py spiders/ __init__.py spider1.py spider2.py ...

scrapy.cfg 存放的目录被认为是 项目的根目录 。该文件中包含python模块名的字段定义了项目的设置。

定义要抓取的数据

Item 是保存爬取到的数据的容器;其使用方法和python字典类似, 并且提供了额外保护机制来避免拼写错误导致的未定义字段错误。
类似在ORM中做的一样,您可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field 的类属性来定义一个Item。
首先根据需要从dmoz.org(DMOZ网站是一个著名的开放式分类目录(Open DirectoryProject),由来自世界各地的志愿者共同维护与建设的最大的全球目录社区)获取到的数据对item进行建模。 我们需要从dmoz中获取名字,url,以及网站的描述。 对此,在item中定义相应的字段。编辑items.py 文件:

import scrapy class DmozItem(scrapy.Item): title = scrapy.Field() link = scrapy.Field() desc = scrapy.Field() 使用项目命令genspider创建Spider

scrapy genspider [-t template] <name> <domain>

在当前项目中创建spider。
这仅仅是创建spider的一种快捷方法。该方法可以使用提前定义好的模板来生成spider。您也可以自己创建spider的源码文件。

$ scrapy genspider -l Available templates: basic crawl csvfeed xmlfeed $ scrapy genspider -d basic import scrapy class $classname(scrapy.Spider): name = "$name" allowed_domains = ["$domain"] start_urls = ( 'http://www.$domain/', ) def parse(self, response): pass $ scrapy genspider -t basic example example.com Created spider 'example' using template 'basic' in module: mybot.spiders.example 编写提取item数据的Spider

Spider是用户编写用于从单个网站(或者一些网站)爬取数据的类。
其包含了一个用于下载的初始URL,如何跟进网页中的链接以及如何分析页面中的内容, 提取生成 item 的方法。
为了创建一个Spider,您必须继承 scrapy.Spider 类,且定义以下三个属性:

import scrapy class DmozSpider(scrapy.spider.Spider): name = "dmoz" #唯一标识,启动spider时即指定该名称 allowed_domains = ["dmoz.org"] start_urls = [ "", "" ] def parse(self, response): filename = response.url.split("/")[-2] with open(filename, 'wb') as f: f.write(response.body) 进行爬取

执行项目命令crawl,启动Spider:

scrapy crawl dmoz

在这个过程中:
Scrapy为Spider的 start_urls 属性中的每个URL创建了 scrapy.Request 对象,并将 parse 方法作为回调函数(callback)赋值给了Request。
Request对象经过调度,执行生成 scrapy.http.Response 对象并送回给spider parse() 方法。

通过选择器提取数据

Selectors选择器简介:
Scrapy提取数据有自己的一套机制。它们被称作选择器(seletors),因为他们通过特定的 XPath 或者 CSS 表达式来“选择” HTML文件中的某个部分。
XPath 是一门用来在XML文件中选择节点的语言,也可以用在HTML上。 CSS 是一门将HTML文档样式化的语言。选择器由它定义,并与特定的HTML元素的样式相关连。

XPath表达式的例子和含义:

(责任编辑:赵红霞)

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多