(2009·北京)在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1) (1)在图1中画图探究: ①当P1为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明; ②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=
【考点】二次函数综合题. 【专题】压轴题;探究型. 【分析】(1)①直线FG1与直线CD的位置关系为互相垂直,理由为:△P1EC按要求旋转后得到的△G1EF全等,再结合∠P1CE=∠G1FE=90°去说明;②按题目要求所画图形见图1,直线G1G2与直线CD的位置关系为互相垂直; (2)①当点P1在线段CH的延长线上时,结合已知说明CE=4,且由四边形FEHC是正方形,得CH=CE=4,再根据题设可得G1F=x.P1H=x-4,进而可得y与x之间的函数关系式;②当点P1在线段CH上时,同理可得FG1=x,P1H=4-x,进而可得y与x之间的函数关系式;③当点P1与点H重合时,说明△P1FG1不存在,再作综合说明即可. 【解答】解:(1)①直线FG1与直线CD的位置关系为互相垂直. 证明:如图1,设直线FG1与直线CD的交点为H. ∵线段EC、EP1分别绕点E逆时针旋转90°依次得到线段EF、EG1, ∴∠P1EG1=∠CEF=90°,EG1=EP1,EF=EC. ∵∠G1EF=90°-∠P1EF,∠P1EC=90°-∠P1EF, ∴∠G1EF=∠P1EC. ∴△G1EF≌△P1EC. ∴∠G1FE=∠P1CE. ∵EC⊥CD, ∴∠P1CE=90°, ∴∠G1FE=90度. ∴∠EFH=90度. ∴∠FHC=90度. ∴FG1⊥CD. ②按题目要求所画图形见图1, ∵FG1⊥CD, ∴直线G1G2与直线CD的位置关系为互相垂直. (2)∵四边形ABCD是平行四边形, ∴∠B=∠ADC. ∵AD=6,AE=1,tanB=
∴DE=5,tan∠EDC=tanB=
可得CE=4. 由(1)可得四边形EFHC为正方形. ∴CH=CE=4. ①如图2,当P1点在线段CH的延长线上时, ∵FG1=CP1=x,P1H=x-4, ∴S△P1FG1=
∴y=
②如图3,当P1点在线段CH上(不与C、H两点重合)时, ∵FG1=CP1=x,P1H=4-x, ∴S△P1FG1=
∴y=-
③当P1点与H点重合时,即x=4时,△P1FG1不存在. 综上所述,y与x之间的函数关系式及自变量x的取值范围是y=
【点评】本题着重考查了二次函数解、图形旋转变换、三角形全等、探究垂直的构成情况等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.
|
|