陶瓷与金属的连接方法主要有:粘合剂粘接、机械连接、熔化焊、钎焊、固相扩散连接、自蔓延高温合成连接、瞬时液相连接等连接方法。将陶瓷与金属连接起来制成复合构件,可充分发挥两种材料的性能优点,对于改善结构件内部应力分布状态、降低制造成本、拓宽陶瓷材料的应用范围具有特别重要的意义。 1、粘合剂粘接:是利用胶粘剂将陶瓷与金属连接在一起,主要应用于飞机的应急修理、炮弹与导弹的辅助件连接、涡轮和压缩机转子的修复等处。尽管粘接连接可以一定程度缓解陶瓷与金属间的热应力且工艺简单、效率高,但接头强度通常小于100MPa,使用温度一般低于200℃,大多用于静载荷和超低静载荷零件。 2、机械连接:机械连接是一种借助结构设计的连接方法,有螺栓连接和热套连接两种。机械连接由于方便已经在部分增压转子与金属的连接中应用。热套连接获得的接头具有一定的气密性,但仅限于低温使用,且这种接头具有较大的残余应力。 3、钎焊连接:钎焊是最常用的连接陶瓷与金属的方法之一,它是以熔点比母材低的材料做钎料,加热到略高于钎料熔点的温度,利用熔化的液态钎料润湿被连接材料表面,从而填充接头间隙,通过母材与钎料间元素的互扩散实现连接。包括直接钎焊和间接钎焊。 4、固相扩散连接:是将被连接材料置于真空或惰性气氛中,使其在高温和压力作用下局部发生塑性变形,通过原子间的互扩散或化学反应形成反应层,实现可靠连接。按连接方式,可分为直接扩散连接和间接扩散连接。固相扩散连接适用于各种陶瓷与金属的连接,相对于钎焊连接,其具有连接强度高,接头质量稳定、耐腐蚀性能好,可实现大面积连接,且接头不存在低熔点钎料金属或合金,能够获得耐高温接头等优点。 5、熔化焊:采用高能束具有加热和冷却速度快的优点,能在陶瓷不熔化的条件下使金属熔化,形成连接。熔化焊连接陶瓷和金属主要包括激光焊和电子束焊接。此法能获得高温下稳定的接头,但是需要对被连接材料进行预热和缓冷,而且陶瓷与金属组配相对困难,连接工艺参数难以控制,设备造价昂贵。 6、瞬时液相连接:简称为TLP 连接或液相扩散焊,是在真空条件下,施加较小或不施加压力,当温度达到中间层熔点或中间层与母材元素通过互扩散形成低熔共晶产物时,在中间层与母材之间形成液相薄膜, 通过中间层降熔元素向母材扩散及母材中高熔点元素向液相中溶解,使液相层熔点不断升高,并在等温条件下凝固,最后经过均匀化形成致密接头。瞬时液相连接综合了钎焊和固相扩散焊的优点,已经成功应用在金属间化合物、先进陶瓷、耐热耐蚀超合金、单晶合金等多种先进材料的连接。 7、自蔓延高温合成(SHS)连接:是在陶瓷和金属之间预置高温焊料,点燃焊料产生短时间高温燃烧,以SHS反应放出的热为高温热源,以SHS产物为焊料,使陶瓷-金属界面迅速融合,并快冷形成牢固的连接。SHS连接材料的配方、压力、气氛等均易于控制,反应时间短,能显著地减少连接时间,但是反应速度太快,焊料燃烧时间难于控制,从而也就使界面反应难于控制。 陶瓷与金属的连接方法很多,目前被广泛使用的仍然是钎焊、固相扩散连接以及瞬时液相连接等方法。 |
|