小学数学需要记住的知识点还是比较多的,看到这些知识点,很多孩子都觉得枯燥,不愿意用心去记。如果我们把一种新的、有趣的记忆方法教给孩子,孩子也会变得有兴趣,因为兴趣是最好的老师。 所以,今天把小学数学学习中的顺口溜分享给大家,孩子们记住了可谓是事半功倍!
大于号、小于号 开口朝着大数笑
1厘米,很淘气,仔细找,才见你, 指甲盖1厘米,伸出手指比一比。 长短和我差不多,大约就是一厘米, 100个我是1米,我是米的小兄弟, 物体长了别用我,要不一定累死你。
跑的最快是秒针,个儿高高,身材好; 跑的最慢是时针,个儿短短,身材胖。 不高不矮是分针,匀速跑步作用大。 时针和分针 小小钟面圆又圆,时针分针跑圈圈。 分针长,时针短,一个快来一个慢。 分针跑完一满圈,时针刚跑一小段。 时、分的认识
时针过了数字几,
就是表示几时多,
究竟多了多少分,
请你仔细看分针。
一三五七八十腊(12月), 三十一天永不差; 四六九冬(11月)三十日;
平年二月二十八, 闰年二月把一加。 一、三、五、七、八、十、腊,31天总是大。 四、六、九、十一月,30天永不差。 二月份,最特殊,二八、二九来变化。 闰年它就二十九,平年它就二十八。 4除年号有余平,整百年号划双0。 记时方法有两种,二十四时和普通。 时间单位排好队,最大单位是世纪。 1世纪,100年;1年等于多少天?平年365,闰年366。 1小时,60分,1分等于60秒。
年、月、日,时、分、秒,相临进率要记好。 七前单月大, 八后双月大。
打竹板,响连天,各位同学听我言, 今天不把别的表,单把四则运算聊一聊, 混合试题要计算,明确顺序是关键。 同级运算最好办,从左到右依次算, 两级运算都出现,先算乘除后加减。 遇到括号怎么办,小括号里算在先, 中括号里后边算,次序千万不能乱, 每算一步都检查,又对又快喜心间。
读数要从高位起,哪位是几就读几, 每级末尾若有零,不必读出记心里, 其他数位连续零,只读一个就可以, 万级末尾加读万,亿级末尾加读亿。
读书方法很容易,首先四位一分级。 要从最高位读起,几千几百几十几。 级的单位读亿万,末尾有零都不读 (级末尾0不读,整个数末尾0不读) 中间夹零读一个,汉字表达没参和。 注读零的:
写数要从高位起,哪位是几就写几, 哪一位上没单位,用0占位要牢记。 多位数的读法和写法 从高级到低级, 具体读法同个级, 万级末尾要读万, 亿级末尾要读亿, 中间有0读一个, 末尾有0不用提。 写法同读一个样, 也是从高写到低, 哪一位上没单位, 注意写0别忘记。
位数不同比大小, 位数多的大,位数少的小, 位数相同看高位, 高位数大数就大。
2、3、5、7和11, 13后面是17, 19、23、29,(十九、二三、二十九) 31、37、41,(三一、三七、四十一) 43、47、53,(四三、四七、五十三) 59、61、67,(五九、六一、六十七) 71、73、79,(七 一、七三、七十九) 83、89、97。(八三、八九、九十七) 100以内的质数 二三五七一十一, 十三十九和十七, 二三二九三十一, 三七四三和四一, 四七五三和五九, 六一六七手拉手, 七一七三和七九, 还有八三和八九, 左看右看没对齐, 原来还差九十七。
中心对顶点 0线对一边, 一边读刻度 内外要分辨
角的分类 90度角叫直角, 小于直角叫锐角, 180度叫平角, 比直角大比平角小, 这样的角叫钝角, 360度叫周角。
三角形的分类 直角三角形一直角, 锐角三角形三锐角, 钝角三角形一钝角, 等边三角形三等边, 等腰三角形两等腰。
角的度量 量角器,放角边, 找中心,对顶点, 0 度线,对一边, 要知角是多少度, 再看角的另一边, 内外刻度要分辨。
大化小,用乘好。 小化大,除不差。
看大数,分小数,凑整十,加零头。 (掌握“凑十法”,提倡“递推法”。) 进位加法 进位加法莫忘记: 相同数位要对齐, 先从个位开始加, 个位满10莫着急, 要向十位去进1。
20以内退位减,口算方法和简单。 十位退一,个加补,又准又快写得数。 退位减法 退位减法要牢记: 相同数位要对齐, 先从个位开始减, 个位不够要退1, 退1顶10加个位, 继续再减就可以。
两数合并用加法,加的结果叫做和。 数位对其从右起,逢十进一别忘记。
从大去小用减法,减的结果叫做差。 加减法速算你莫愁,拿到算式看清楚, 接近整百凑整数,如下处理无谬误。 加法不足减补数,超余零头加在后。 减法不足加补数,超余零头减在后。
小数加减计算题,以点对准好对齐。 算法如同算整数,算毕把点往下移。 看到'除',圈一圈, '除'字前面是除数, '除'字后面被除数, 位置交换别忘了。
两位数乘法并不难,计算过程有三点: 乘数个位要先算,再用十位乘一遍, 乘积末位是关键,要和十位来对端; 两次乘积相加完,层层计算记心间
除数两位看两位,两位不够除三位。 除到那位商那位,余数要比除数小, 然后再除下一位,试商方法要灵活, 掌握“四舍五入”法,还有“同商比较法”, 了解“折半定商法”,不足除数商九、八。(包括:同头、高位少1) 除数一位看一位,一位不够看两位,(一看) 除到哪位商那位, (二商三乘减)
除数两位看两位,两位不够看三位。 除到哪位商那位,记熟口诀定好位。 试商方法要灵活,不够商“1”“0”占位。 余数要比除数小,然后再除下一位。 除数当姐余当妹。 (四舍五入)
我是0,本事大, 除法运算显神通。 不够商1我来补, 有了空位我就坐。 别人要想把我除, 常胜将军总是我。
拿到式题认真看,先算乘除后加碱。 遇到括号要先算,运用规律要改变。 一些数据要记牢,技能技巧掌握好。
小数乘小数,法则同整数。 定积小数位,因数共同凑。 小数乘法 小数乘法很好算, 不用对齐小数点, 小数部分共几位, 结果从后往前看, 数够几位点上点。 小数乘法不算难, 关键点好小数点; 因数小数位数和, 等同积中小数位; 积中位数如不够, 用0补足再点点。 因数如果不为0, 还有奥秘在其中; 一个因数小于1, 另一因数大于积; 一个因数大于1, 另一因数小于积。 小数除法 小数除法别马虎, 算前先要看除数, 若是整数不麻烦, 若是小数要记住: 向右移动小数点, 要把小数变整数, 除数向右移几位, 被除数同移别含糊, 数够位数点上点, 位数不够用0补; 计算法则同整数, 除到被除数的末尾有余数, 在余数后添0继续除。 算出结果须记住: 商和被除数的小数点, 定要对齐莫疏忽。
除数的小数点一划,(去掉小数点) 被除数的小数点搬家,向右搬家搬几位, 除数的小数位数决定它。
分数乘法易学懂,分子分母分别乘。 算式意义要搞清,上下能约更轻松。 分数除法方法妙,原来除号变乘号。 除数子母打颠倒,进行计算离不了。
约分、约分, 相乘约净,省时省力。 从上往下,从左到右, 弄清数据,一数不漏。 遇到小数,去点为整, 位数不够,用“零”来补。
分数比化简,互质数两端。 观察记五点:1和所有数; 相邻两个数;两质必互质。 大数是质数,两数定互质。 小数是质数,大数不倍数。(是小数的)
叙述形式有三种, 读法意义和名称。 解题方法要记清, 缩句化简一步算。 标点词语把句断, 分层布列莫迟延。 列式方法有两种, 可用算式和方程。
(一)相差关系 1、多多少,少多少,都是大减小。 2、已知条件说比多,比前用加比后减。 3、已知条件说比少,比前用减比后加。 (二)倍数关系 1、倍在问题里用除。 2、倍在已知条件里,求是前用乘,求是后用除。 (三)求比几倍多(少)几的数 根据倍数分乘数,根据多少分加减。 算除先加减,算乘后加减。
题目读几遍,从中找关键; 先看求什么,再去找条件; 合理列算式,仔细来计算; 一题求多解,单位莫遗忘; 结果要验算,最后写答案。
四舍五入方法好,近似数来有法找; 取到哪位看下位,再同5字作比较; 是5大5前进1,小于5的全舍掉; 等号换成约等号,使人一看就明了。
括号括号抢第一, 乘法、除法排第二, 最后才算加减法, 谁在前面先算谁。 四则混合运算 混合运算有顺序,同级计算左边起。 加、减、乘、除混算题,先算乘、除要牢记。 如果要是有括号,先算括号里面题。 小数大小的比较 小数大小看高位,整数大时数就大。 整数相同看十分位,十分位大时数就大, 十分位相同看百分位,百分位大时数就大……。
分数大小的比较 几个分数比大小,分子、分母要看好。 分母相同看分子,分子大的分数大; 分子相同看分母,分母大的分数小。 多位数改写 万位后面“0”去掉,加上万字改完了。 亿位后面“0”去掉,加个亿字就改好。
整数加法法则 整数加法有规律,相同数位要对齐。 和不满十落原位,满十上位要进一。 凑十余数落下来,加到哪位落哪位。 进位加数加一起,结果不差半分厘。 整数减法法则 整数减法有规律,相同数位要对齐。 大减小时落下差,小减大时去借位。 借一来十减后加,加减结果落原位, 连续借位要细心,借走剩几要牢记。 多位数乘法法则 整数乘法低位起,几位数乘法几次积。 个位数乘得若干一,积的末位对个位。 十位数乘得若干十,积的末位对十位。 百位数乘得若干百,积的末位对百位 计算准确对好位,几次乘积加一起。 因数末尾有0的乘法法则 因数末尾若有0,写在后面先不乘, 乘完积补上0,有几个0写几个0。 多位数除法法则 整数除法高位起。除数几位看几位。 这位不够看下位,除到哪位商哪位。 余数要比除数小,不够商一零占位。 小数加减法法则 小数加减有规律,相同数位要对齐。 个位对个位,十位对十位。…… 十分位对着十分位,百分位对着百分位。…… 总而言之一句话,小数点要对齐。 计算结果是小数,末尾有0要划去。 小数乘法法则 小数乘法低位起,先按整数算出积。 再看因数中小数共几位, 就从积的右边起,数出几位点上点,末尾有0要划去。 小数除法法则 小数除法高位起,看着除数找规律。 除数是整数直接除,除到哪位商哪位 不够商一零占位,商和被除数点对齐。 除数是小数变整数,被除数小数点移同位. 右边数位若不够,应该用零来补齐。
分数加减法法则 分数加减很简单,统一单位是关键。 同分母分数相加减,只把分子相加减,分母大小不改变。 异分母分数相加减,先通分来后计算。 分数乘法法则 分数乘法更简单,分子、分母分别算。 分子相乘作分子,分母相乘作分母。 分子、分母不互质,先约分来后计算。 分数除法法则 分数除法最简便,转换乘法来计算。 除号变成乘号后,除数的倒数要出现。 位置和方向 早晨起床面向阳,前是东来后是西,左是北来右是南。 地图方位有规定,上北下南左西右东记得牢。 长度、面积、体积、容积的区别 长度一条线,面积一大片; 体积占空间,容积算里面。 字母表示数 字母表示数,关键要记住, 省略乘号时,数要写在前,字母写在后。 相同的因数变底数,因数的个数变指数。 乘号可以简写成点,加、减、除号不能丢。 列方程解应用题 列方程解应用题,抓住关键去分析。 已知条件换成数,未知条件换字母, 找齐相关代数式,连接起来读一读。
名数的改写 名数改写须注意, 计量单位要牢记: 高级单位变低级, 相乘进率就可以; 如果遇到复名数, 改写相加别大意。 低级单位变高级, 除以进率就可以; 如果相除有余数, 余数仍然是低级。 整数乘法 整数乘法要记住: 用乘数去乘被乘数, 低到高位依次来, 用哪位去乘别马虎, 乘得的数的末位数, 和那位对齐别疏忽, 再把几次得数加起来, 计算结果就得出。 因数中间有0的乘法 若有0在乘数间, 计算过程可简便, 隔过0去不用乘, 数位对齐是关键。 因数末尾有0的乘法 末尾有0不用管, 只把其它数位算, 算出结果要记住: 末尾把0总数添。 整数除法 先看除数有几位, 试除就看被除数的前几位, 如果它比除数小, 试除再多看一位, 除到被除的哪一位, 商就写在那一位; 每次除后要记牢: 余数要比除数小。 被除数、除数末尾有0的除法 先消除数0个数, 被除数0同消除, 消除0后再计算, 计算法则还不变, 结果若要有余数, 消除的0还要补。 四则运算法则 四则运算并不难, 先算乘除后加减; 如果题中有括号, 括号里面先计算, 小中括号依次做, 保证运算不会乱; 小数分数也同理, 运算法则都不变。 小数加、减法 小数加减很简单, 定要对齐小数点, 计算法则同整数, 算出得数别出偏: 小数点对齐点下边。
分数加、减法 同分母,最简单, 只把分子相加减; 异分母,也不难, 通分之后再计算; 分母不变要牢记, 算出结果要化简。
分数乘、除法 分数乘法要记清, 分子分母各相乘; 为了计算能简便, 能约分的先约分。 分数除法不难算, 除数颠倒变相乘; 带分数化假分数, 计算法则仍相同。 分数大小的比较 分母相同看分子, 分子大的比较大, 分子相同看分母, 分母小的反而大。
假分数化带分数或整数 假分数化带分数, 分子分母去相除, 商为整数余分子, 分母不变要记住。 如果两数能整除, 所得商就是整数。
带分数化假分数 带分数化假分数, 原分母仍作分母, 分母整数相乘积, 和原分子加一处, 来作分子要记住。
百分数和小数互化 小数化成百分数, 小数点右移要记住, 移动两位并做到: 在后面添上百分号。 百分数要化小数, 小数点左移要记住, 移动两位并做到: 必须去掉百分号。
百分数和分数互化 分数要化百分数, 先把分数化小数; 除不尽时别发愁, 三位小数可保留。 化成小数要记住: 小数再化百分数。 百分数要化分数, 把它改写成分数, 能约分的要约分, 约到最简即完成。
分数(百分数)乘、除法一般应用题判断 判断分数应用题, 关键是确定单位“1”。 只要找出标准量, 比较量再去对比。 求某数的几分之几用乘法, 知某数的几分之几是多少, 要求某数除法题。 分数乘除能辨清, 百分数是同一理。 直线、线段和射线 两个端点叫线段, 一个端点叫射线, 没有端点叫直线, 直线长度是无限。
几何图形的计算① 周 长 正方形最好记, 它的边长乘以4; 长方形耍手腕儿, 长宽之和乘以2; 圆的周长有点怪, 量出直径乘以π。
面 积 面积计算很容易, 弄清道理是前提: 以长方形为基础, 长宽相乘即面积; 邻边相等正方形, 边长相乘就可以; 平行四边形一样, 宽是高来长为底; 梯形上下底平均, 和高相乘同一理; 上底为0三角形, 它和梯形是同类; 把一个圆分两半, 展开拼合看仔细, 半径平方乘周率, 扇形是圆一部分, 圆心角度乘面积, 除以圆周360, 计算面积绝无疑。 圆的画法 确定中心定半径, 圆规尖脚固圆心, 另一只脚转一圈, 一个圆圈即画成。 几何图形的计算② 表面积 计算物体表面积, 会算平面为前提: 长、正方形皆六面, 六面和即表面积; 圆柱体与圆锥体, 计算侧面不算底, 底面周长乘以高, 即为圆柱侧面积; 圆锥展开为扇形, 扇形面即侧面积; 求出侧面加底面, 结果即为表面积。
体 积 计算体积并不难, 弄清道理是关键: 以长方体为基础, 长宽高乘即得出; 三者相等正方体, 棱长立方为体积; 圆柱底面乘以高, 三分之一圆锥体; 容积要从里面量, 计算方法同体积。
基数与序数 基数序数不相通, 数字一样却不同: 表示多少是基数, 要问第几用序数。
质 数 质数生来怪脾气, 约数只有1和己, 最小是2大无边, 合数是它对立面。 一位质数2、3、5和7, 两位1、3、7、9前加1, 4后3,7前有9,7后1, 3、4、6后加7、1, 2、5、7、8后添9、3, 二十五个质数要记全。
巧记百以内质数 二、三、五、七、一十一, 十三、十九、一十七, 二三、二九、三一和三七, 四一、四三、四十七, 五三、五九、六一和六七, 七三、七九、七十一, 八三、八九、九十七, 百以内质数要熟记。 能被2、3、5整除的特征 一数能被2整除, 末位必定是偶数; 一数能被3整除, 各位数和是3倍数; 一数能被5整除, 末位必是0或5。
分解质因数 合数分解质因数, 用最小质数去整除, 得出的商是质数, 除数乘商来写出; 得出的商是合数, 照此方法继续除, 直到得出质数商, 再用连乘表示出。 分解质因数 分解质因数,方法是短除。 除数是质数,商也是质数。 表示的形式很简单:合数=质数×质数…… 质数、合数 分清质数与合数,关键就是看约数。 1的约数只一个,不是质数也非合数; 如果约数只两个,肯定无疑是质数; 3个约数或更多,那就一定是合数。 求最大公约数 要求最大公约数, 用公有的约数去连除, 直到商为互质数, 除数连乘就得出; 如果两数相比较, 小是大数的约数, 不必再用短除式, 小数就是公约数。
求最小公倍数 要求最小公倍数, 用公有质因数去连除, 直到商为互质数, 除数乘商就得出; 两数若是互质数, 乘积即为公倍数; 大是小数的倍数, 不必去求已清楚。 判断正、反比例 判断比例很容易, 两种量中找关系: 比值“一定”为正比, 积“一定”是反比例。 (亦可简记为:商正积反)
常用计量单位换算 计量单位好换算, 牢记进率是关键: 千克也就是公斤, 与吨进率是1000; 千米公里为一体, 1公里是 1000米; 米分厘毫要熟知, 之间进率都是10; 面积体积最简单, 进率分为百和千; 1000毫升是一升, 立方分米也相同; 二十四时为一日, 时分秒要记六十。
一般应用题解答步骤 应用题解并不难, 弄清题意是关键: 先从已知条件想, 再往所求问题看; 也可逆向去思考, 综合分析作判断; 画图可帮理思路, 以此推导不出偏; 先算后算有次序, 列出算式细心算; 算出结果要检验, 最后莫忘写答案。 列方程解应用题方法 列方程,要记住: 先要找出未知数, 等量关系细分析, 弄清题意别含糊, 然后列出方程式, 用x表示未知数, 解方程时要细心, 检验过程别疏忽。 |
|