分享

悖论及其解决方案

 pengxq书斋 2016-12-13

悖论及其解决方案

 

1、一连串悖论的出现

 

    罗素的悖论以其简单明确震动了整个数学界,造成第三次数学危机。但是,罗素悖论并不是头一个悖论。老的不说,在罗素之前不久,康托尔和布拉里·福蒂已经发现集合论中的矛盾。罗素悖论发表之后,更出现了一连串的逻辑悖论。这些悖论使入联想到古代的说谎者悖论。即我正在说谎这句话是谎话等。这些悖论合在一起,造成极大问题,促使大家都去关心如何解决这些悖论。

    头一个发表的悖论是布拉里·福蒂悖论,这个悖论是说,序数按照它们的自然顺序形成一个良序集。这个良序集合根据定义也有一个序数Ω,这个序数Ω由定义应该属于这个良序集。可是由序数的定义,序数序列中任何一段的序数要大于这段之内的任何序数,因此Ω应该比任何序数都大,从而又不属于Ω。这是布拉里·福蒂1897328日在巴洛摩数学会上宣读的一篇文章里提出的。这是头一个发表的近代悖论,它引起了数学界的兴趣,并导致了以后许多年的热烈讨论。有几十篇文章讨论悖论问题,极大地推动了对集合论基础的重新审查。

    布拉里·福蒂本人认为这个矛盾证明了这个序数的自然顺序只是一个偏序,这与康托尔在几个月以前证明的结果序数集合是全序相矛盾,后来布拉里·福蒂在这方面并没有做工作。

    罗素在他的《数学的原理》中认为,序数集虽然是全序,但并非良序,不过这种说法靠不住,因为任何给定序数的初始一段都是良序的。法国逻辑学家茹尔丹找到条出路,他区分了相容集和不相容集。这种区分实际上康托尔已经私下用了许多年了。不久之后,罗素在1905年一篇文章中对于序数集的存在性提出了疑问,策梅罗也有同样的想法,后来的许多人在这个领域都持有同样的想法。

    布拉里·福蒂文章中对良序集有一个错误的概念,这个概念是康托尔1883年引进来的,但直没有受到什么重视。18878月,在布拉里·福蒂的文章发表以后,阿达马在第一次国际数学家大会上仍然给出了一个错误的良序集的定义。因为布拉里.福蒂所考虑的关于良序集的概念太弱了,他不得不引进自己的完全序。这两个概念并不一致,每一个良序集是完全序集,但是反过来不对。布拉里·福蒂很快就认识到他的错误,他在189710月的一篇文章中指出这两个概念的不同,但是他没有重新检查自己的证明。一直到1906年初他给库图拉的封信中,他似乎还认为:一旦良序集和完全序集的区别被人们认识到,在他的文章中揭示的矛盾就会消除。

    康托尔1899728日给戴德金的信中,谈到布拉里·福蒂所提到的矛盾,这个矛盾并没有导致康托尔放弃集合的良序性,而放弃了它的集合性。他把集合分为两类:相容集合和不相容集合,而只把前者叫做集合。这种区分法预示了冯·诺依曼在1925年引进的集合和类的区别。但是康托尔对于这种区分的判断标准仍然是不精确的。如果我们把一个集体考虑为一个对象而没有矛盾,它是一个集合。这个想法后来改进为:当一个集体是另一个集体的元素,它是一个集合。

    这种相容集体和不相容集体的区别早已被施罗德引进来。他认为如果集体的元素彼此是相容的,它是相容的;而如果集体的元素彼此是不相容的,它是不相容的。有趣的是施罗德引进的这种区分和悖论没有关系,因为这种现代形式的悖论当时还不知道。康托尔关于集体的叙述——两个等价的集体或者都是集合,或者都是不相容的,可以看成是取代公理的最早的表述。这个公理是弗兰克尔和斯科兰姆在1922年提出的。

    布拉里·福蒂的悖论揭示了康托尔集合论的矛盾。其实,康托尔本人在这之前已经意识到集合论的内在矛盾。他在1899728日给戴德金的信中指出,不能谈论由一切集合构成的集合,否则就会陷入矛盾。这实际上就是罗素悖论的内容。

    康托尔最大基数悖论和布拉里·福蒂悖论到罗素悖论都是集合论悖论,它们直接同康托尔朴素集合论的不严格性有关。毛病出在集合的定义上,也就是任何性质就对应一个具有这种性质的集合,这就是所谓内函公理组。集合论的这种矛盾必须通过削弱这个错误的公理组才能解决。

    罗素的悖论发表之后,接着又发现一系列悖论(后来归入所谓语义悖论):

    1、理查德悖论。法国第戎中学教师理查德在1905年发表了一个悖论,大意如下:法语中某些片语表示实数,比如一个圆的圆周与直径之比就表示实数π。法语字母也象英语字母一样有一定的顺序,所以我们可以把所有片语按照字母顺序排列,然后按照片语中字母的多少排列,少的在前,多的在后。这样我们把能用片语表达的实数排成一个序列,ala2a:,……。于是就得到了所有能用有限多字(字母)定义的数了。它们构成了一个可数集合E。现在我们提出一个规则把这个序列改变一下造成一个数来:E中第n个数的第n位为p,我们造一个实数如下:其整数部分为0,如果p不是89;其第n位小数为p1,要是p89的话,则第n位变成1”。这个实数显然不属于E,因为它和E中每个数都不一样。但是它们却可以由上面有限多个字组成的话来表示,因此应该属于E,这就出现矛盾。

    理查德提出的悖论是因为看到法国《纯粹科学与应用科学通论》1905330日一期的编者按语而写的。编者谈到,19048月在德国海德尔堡召开的国际数学家大会上,德国数学家寇尼格证明连续统是不能够良序化的。可是一个月后,德国数学家策梅罗却证明了任何集合都能良序化,理查德从这段话中看到了集合论中存在某些矛盾,这些矛盾和良序性和序数的概念有关系,于是他给该刊物编辑部写了一封信,登在19056月号上,编者还加了按语。

    2、培里悖论。培里是英国的图书馆管理员。有一天他告诉罗素下面的悖论:英语中只有有限多个音节,只有有限多英语表达式包含少于40个音节,所以,用少于40个音节的表达式表示的正数数目只有有限多个。假设R为不能由少于40个普的英语表达式来表示的最小正整数(The least positive integer which is not denotedby an  expression in the English language containing fewer than forty  syllables)。但是,这段英语只包含三十几个音节,肯定比40个少,而且表示R,这自然产生了矛盾。

    3.格瑞林和纳尔逊悖论。纳尔逊是新康德主义的小流派之一弗瑞斯派的代表。1908年他和他的学生格瑞林把下面的悖论发表在弗瑞斯派的一个文集上,通常称为格瑞林悖论。如果一个形容词所表示的性质适用于这个形容词本身,比如黑的两字的确是黑的,那么这个形容词称为自适用的。反之,一个形容词如果不具有自适用的性质,就叫做非自适用的。在英语中:“Polysyllabic”(多音节的)“English”(英语的)这些词都是自适用的形容词,而“monosyllabic”(单音节的)“French”(法语的)这些词就是非自适用的。现在我们来考虑非自适用的这个形容词,它是自适用的还是非自适用的呢?如果非自运用的是非自适用的,那么它就是自适用的;如果非自适用的是自适用的,那么按照这词的意思,则它是非自适用的,这就导出矛盾。

 

2、悖论动摇了整个数学的基础

 

    1900年左右,数学已经发展成为一个庞大的领域了。当时纯数学大致分为算术代数、几何和数学分析。随着第二次数学危机的解决,数学分析建立在极限理论基础上。而极限理论中,有些基本性质要由单调有界的数列必有极限这个定理来证明。这个定理从直观上看尽管很明显,但是追求严密性的数学家很早就要求不靠直观而靠逻辑来证明,要求一切定理都从比较简单的公理推导出来。

    要推导极限的性质,必须对数列有明确的概念。这里的数不只是有理数,还包括无理数,这两种数构成实数的集合。所以,当务之急就是建立起严格的实数理论。戴德金在1872年发表了《这续性与无理数》这本专著,同年康托尔也发表实数理论的文章。康托尔通过一定的有理数序列(基本序列)来定义实数。而戴德金则利用有理数集合的分割来定义实数。他们的理论虽然逻辑上可靠,但是都不太自然,依赖于有理数的集合概念。这样一来,实数理论的无矛盾性就归结为有理数论,进而归结成自然数论的无矛盾性了。

    自古以来,大家都认为自然数的算术是天经地义、不容怀疑的。不过有些数学家如弗雷格和戴德金又进一步把自然数归结为逻辑与集合论。这样一来,集合论与逻辑成为整个数学的基础。罗素悖论一出现,集合论靠不住了,自然数的算术也成问题,这样一来,整个数学大厦都动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第二卷末尾写道:一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础跨掉了。当本书等待付印的时候,罗素先生的一封信把我置于这种境地。戴德金原来打算把《连续性及无理数》第三版付印,这时也把稿件抽了回来。他也觉得由于罗素悖论,整个数学的基础都靠不住了。

    悖论涉及的是集合、属于、所有(全部)性质与集合的对应关系、无穷这些最基本的概念。这些:概念在数学中是天天必须用到的。如果不加以澄清,在数学证明的过程中,不是这里就是那里就会出毛病。

    有了毛病,有的人就主张把集合论全盘推倒,只考虑有限的东西,这样不仅把数学内容砍掉了一大半,而且无穷的问题仍会出现。另一部分人则主张限制这些概念的使用范围,当然限制太多了,就缩小了数学领域,而限制太少了又会出现矛盾,所以要在这两者之间找到一种最好的解决办法。从二十世纪初,人们就一直在找,虽然并没有得到最终满意的解决,不过给数学提供一个可靠的基础还是可以办得到的。

 

3、罗素的类型论

    19016月罗素发现了悖论。他在1902616日把这个悖论告诉了弗雷格。他在1903年出版的《数学的原理》中,有一段可能是在1901年写的,他写道:作为多的类与类的项具有不同的类型整个秘密的关键是逻辑类型的不同。对这个问题的解决,他只写了不到三十行。他还考查了其他的解决办法,觉得它们都不令人满意,于是得出结论:没有适当的哲学涉及到上述的矛盾,这些矛盾直接从常识中得出,也只能通过抛弃掉某些常识的假定而解决。但是在这本书出版之前,罗素感觉到这个题目还应该更加注意,于是他写了大约六页的一个附录,尝试性地提出了类型论,他要求在回答所有问题之前变成为更加精致的形式。自然,当时罗素已经知道其他的悖论了,例如布拉里·福蒂悖论和最大基数悖论。

    大约190512月,罗素抛弃了类型论。为了克服由悖论引起的困难,他提出了三种理论:1、曲折理论,命题函数非常简单时才决定类,而当它们复杂时就不能决定类;2、限制大小的理论,不存在象所有实体的类的东西;3、非类理论,类和关系完全都禁用。这篇文章甚至投有提到类型论。190625日,罗素在这篇文章末尾加了一个注:通过更进一步的研究,我一点也不怀疑非类理论能够解决本文第一节所陈述的所有困难。这就是说,能够解决悖论。

    非类理论的中心思想是它不讲满足某种结定语句的所有对象的类,而只讲语句本身和其中的代换。于是关于指定类的讨论都可以用语句和代换来表述。但是当我们讨论一般的类作为可量词化变元的值时,这种讨论德意义就不明显了。在这篇文章中,罗素已经承认对于大部分经典数学来说,非类理论的可能证明是不适当的。他在19062月加的附注中表现出他对于刚刚抛弃的类型论又重新燃起希望。果然,他很快就回来进一步细致地研究类型论,并于19067月发表论文了。

    罗素把悖论加以分析之后认为:一切悖论的共同特征是自我指谓或自指示、自反性,它们都来源于某种恶性循环。这种恶性循环来源于某种不合法的集体(或总体或全体)。这类集体的不合法之处在于,定义它的成员时,要涉及到这个集体的整体。罗素悖论是最明显的例子。定义不属于自身的集合时,涉及到自身这个整体,这是不合法的,这种涉及自身的定义称为非直谓定义。所以要避免悖论,只需遵循“(消除)恶性循环原理凡是涉及一个集体的整体的对象,它本身不能是该集体的成员。根据这个原则,罗素提出他的分支类型论。

    罗素把论域分成为等级或者类型,只有当满足某一给定条件的所有对象都属于同一类型时,我们才能谈到他们的全体,于是一个类的所有成员必定全都具有同一类型。同样,任何一个量词化的变元也必定有同一类型。这样罗素就引导谈论所有任何的区别。所有由普遍量词的束缚变元来表示,它们跑遍一个类型;而任何则由自由变元来表示,它们可以指任何不确定的事物,而不管其类型如何。因此自由变元是没有任何妨碍的。

    但是,分支类型论禁例太严,以致无法推出全部数学。为此罗素引进可化归公理:任何公式都可以和一个直谓公式等价。也就是都可以化为含n级变元的n1级公式。这样一来可以不必考虑约束变元的级了。这种类型论称为简单类型论。

    由于集合()和谓词(命题函数)是平行的,因此我们可以用集合更简单地解释一下:简单类型论是由一系列层构成的系统,最底一层是第0级,上面各层、各级都是同一类的型构成,最低一层的元素称为个体,由这些个体所成的类就构成第一级的类,由一级的类为元素所成的类就构成第二级的类,依此类推。

    1926年,英国年轻数学家拉姆塞把悖论区别为逻辑悖论(或谓词悖论、集合论悖论)及语义悖论(或认识论悖论)。他证明对于集合论悖论,简单类型论就足以消除。因为这种悖论只牵涉到谓词和变元的关系,它们不同级便可以消除悖论了。但是语义悖论要涉及到谓词本身,非得分支类型论不可。

    虽然类型论可以消除悖论,但是缺点很多,非常烦琐,特别是可化归公理的引进,具有很大的任意性,因此受到很多批评。不过它的历史作用还是很大的,也借助它,罗素才实现他的逻辑主义纲领,完成前人没有完成的计划。

    罗素和怀特海的《数学原理》出版之后,许多人对于其系统进行简化与改进。特别是哥德尔及塔尔斯基。1940年,丘奇给简单类型论一个新的表述。类型论至今仍是数理逻辑中主要的系统之一。

 

4、策梅罗的公理集合论

 

    1908年,策梅罗采用把集合论公理化的方法来消除罗素悖论。他的著名论文《关于集合论基础的研究》是这样开始的:集合论是这样一个数学分支,它的任务就是从数学上以最为简单的方式来研究数、序和函数等基本概念,并借此建立整个算术和分析的逻辑基础;因此构成了数学科学的必不可少的组成部分。但是在当前,这门学科的存在本身似乎受到某种矛盾或者悖论的威胁,而这些矛盾和悖论似乎是从它的根本原理导出来的。而且一直到现在,还没有找到适当的解决办法。面对着罗素关于所有不包含以自己为元素的集合的集合的悖论,事实上,它今天似乎不能再容许任何逻辑上可以定义的概念集合为其外延。康托尔原来把集合定义为我们直觉或者我们思考的确定的不同的对象做为一个总体。肯定要求加上某种限制,虽然到现在为止还没有成功地用另外同样简单的定义代替它,而不引起任何疑虑。在这种情况下,我们没有别的办法,而只能尝试反其道而行之。也就是从历史上存在的集合论出发,来得出一些原理,而这些原理是作为这门数学学科的基础所要求的。这个问题必须这样地解决,使得这些原理足够地狭窄,足以排除掉所有的矛盾。同时,又要足够地宽广,能够保留这个理论所有有价值的东西。

    在这篇文章中,策梅罗实行的计划,是把集合论变成一个完全抽象的公理化理论。在这样一个公理化理论中,集合这个概念一直不加定义,而它的性质就由公理反映出来。他不说什么是集合,而只讲从数学上怎样来处理它们,他引进七条公理:决定性公理(外延公理)、初等集合公理(空集公理、单元素公理、对集公理)、分离公理、幂集公理、并集公理、选择公理、无穷公理(稍稍改变一下原来形式)

    实际上策梅罗的公理系统Z(公理17)把集合限制得使之不要太大,从而回避了比如说所有对象,所有序数等等,从而消除罗素悖论产生的条件。策梅罗不把集合只简单看成一些集团或集体,它是满足七条公理的条件的对象,这样排除了某些不适当的集合。特别是产生悖论的原因是定义集合的所谓内函公理组,如今已换成弱得多的分离公理组。

    策梅罗首次提出的集合论公理系统,意义是非常重大的。但是,其中有许多缺点相毛病。比如:公理3的确定性质的含义并不清楚,他的公理没有涉及逻辑基础,选择公理有许多争议等等。后来经许多人加以严格处理及补充,才成为严格的公理系统,即ZFZFS系统。其中Z代表策梅罗,F代表弗兰克尔,S代表斯科兰姆。这里面特别是有斯科兰姆和弗兰克尔进行的改进。但是一般的ZF中往往不包括选择公理,如果加进选择公理则写为ZFC(ACAxiom of Choice的缩写,有时简写为C)

    策梅罗的公理系统发表之后,遭到各方面的批评。特别是斯科兰姆1922年在8月份在赫尔辛基召开的第五届斯堪的纳维亚数学家大会上做了公理化集合论的报告,他对策梅罗公理系统提出了八点批评:

    1、为了讨论集合,我们必须从对象开始,也就是用某种方法构成的域;2、策梅罗关于确定的命题要有一个定义使得它精确化;3、在所有完全的公理化中,集合论的概念不可避免地是相对的;4、策梅罗的公理系统不足以提供通常集合论的基础;5、当人们打算证明公理的无矛盾时,谓语句所引起的困难;6、对象域B的不唯一性;7、数学归纳法对于抽象给出的公理系统的必要性;8、选择公理的问题。

    另一方面,许多人对策梅罗公理集合论提出许多改进意见。首先Z太狭窄不足以满足对集合论的合法需要,有许多集合不能由它产生出来,也不能够由此造出序数的一般理论和超穷归纳法。为了弥补这个缺陷,弗兰克尔加进一个公理组即代换公理。另外,弗兰克尔还把公理以符号逻辑表示出来,形成了现在通用的ZF系统。

    一般认为经过弗兰克尔改进的策梅罗集合论公理系统,再加上选择公理是足够数学发展所需的,但是还需要加一条限制性的公理,即除了满足这些公理的集合之外没有其他的集合。采取这样一个公理是出于一个悖论的启发,这个悖论最初是法国数学家米里马诺夫在1917年提出的。这个悖论涉及所谓基础集合,为了排除这种集合,冯·诺依曼引进公理9(基础公理),从而消除了上述悖论。

    这样定义的集合论(ZF)中,虽说与连续统假设有关的幂集公理不留下疑点,但正因为不包含有很多问题的选择公理(AC)”,所以纯粹性很高。虽然至今还不能给出ZF集合论的无矛盾性的证明,可是它已经没有必须大书特书的难点了。

    常用的集合论公理系统除了ZF之外,还有由冯·诺依曼开创并由贝耐斯、哥德尔加以改进、简化的集合论公理系统—NBG系统(有时简称为BG系统,N代表冯·诺依曼,B代表贝耐斯,G代表哥德尔)

    大数学家冯·诺依曼在他年青的时候,开辟了公理化集合论的第二个系统。他第一个主要的数学研究就是重新考虑策梅罗弗兰克尔对于集合论的公理化。在他的博士论文中论述了一般集合论的公理构造,这篇论文是他1925年用匈牙利文写的。但是他后来在两篇重要文章中用德文发表了其中主要的思想,一篇是《集合论的一种公理化》,另二篇是《集合论的公理化》。第一篇文章中他给出了自己的公理化体系,在第二篇文章中他详细地证明了怎样由他的公理系统导出集合论。

    ·诺依曼的处理方法是策梅罗公理化的推广。原来的理论基本上保持了下来,但是形式有所变化。表面看来新公理和旧公理非常不一样,但是主要是使用的语言有所变化。通常表示集合论的语言有两种,一种是集合和它的元素的语言,一种是函数及其变项的语言,这两种语言是等价的。

    策梅罗用的主要是集合的语言,不过他也隐含地用函数的语言。而在弗兰克尔改进的理论里,这点就更加明显。冯·诺依曼选用的语言完全与策梅罗相反,他一开始就用变项和函数来叙述他的公理。

    但是策梅罗弗兰克尔和冯·诺依曼两个公理系统主要差别还不是语言的问题,而是如何在朴素集合论中排除悖论的方式。在策梅罗弗兰克尔系统中,是通过限制集合产生的方式来达到这个目的的,他们把集合只限制在对于数学必不可少的那些集合上。但是从冯·诺依曼看来,这样施加限制有点不必要地过分严格,使得数学家在论证过程中失掉一些有时有用的论证方式,而这些论证方式似乎是没有恶性循环的。于是冯·诺依曼采取一个比策梅罗弗兰克尔更广的概念,而同时却消除任何产生悖论的危险。

    按照冯·诺依曼的想法,悖论的产生也许是因为过大的总体所引起,更准确来讲,就相当于所有集合的集合,所以冯·诺依曼就觉得只要让这类总体成为元素,就可以避免悖论。

    在冯·诺依曼的公理系统中,悖论是通过下面的方法来避免的;承认有两种类型的类,即集合和固有类。集合可以是其他类的成员,而固有类则不容许是其他类的成员。在这个公理系统中,我们就有三个原始概念:集合,类,属于关系。所以NBG中的定理不一定是ZF中的定理,不过可以证明ZF中的每个合适公式在ZF中可证明当且仅当在NBG中可证明。这样看来NBGZF的一个扩充,数学家可以根据自己不同的需要来选用自已认为方便的公理系统。比如哥德尔是在NBG公理系统中考虑选择公理及广义连续统假设的相对无矛盾性,而科亨则是在ZF公理系统中考虑选择公理及连续统假设的独立性。除了这两个最重要的集合论公理系统之外,还有好几个公理系统,但是它们的用途远不如ZFNBG系统了。

    尽管集合论公理系统建立起来,并得到广泛承认,但仍然存在许多问题,例如:不可达基数和序数是不是存在?;连续统假设是否能够证明;公理系统的协调性和独立性,……。从三十年代之后,为了解决这些问题,公理集合论掀开了新的一页。

 

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多