分享

2017年高考数学全国1,3排列组合考查题型 10种策略

 xfshok 2017-05-25

2017年高考数学全国1,3排列组合考查题型 10种策略

【热点深度剖析】

从这三年高考来看,对这一热点的考查,主要考查分类计数原理、分步计数原理,排列组合,等可能事件的概率,古典概型,几何概型,条件概率,相互独立事件的概率、互斥事件的概率. 2014年高考题主要考查古典概型,利用排列组合知识求古典概型的概率及条件概率概率的计算,属于基础题.2015年考查相互独立事件的概率;2016年考查了沉寂多年的单纯的排列组合问题及多年没有考查的几何概型.高考对这一部分知识的考查单独的考题会以选择题、填空题的形式出现,

一般在试卷的靠前部分,属于中低难度的题目,难度较低,分清事件是什么事件是解题的关键;排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;从高考试题的形式来看,排列组合和概率往往结合在一起考查,且以概率为主,单纯考察排列组合的试题较少,试题难度不大,为中低档题,预测2017年高考,全国卷1考查排列组合问题,全国卷3考查几何概型的可能性较大,另外古典概型、条件概型也不容忽视.

【重点知识整合】

2017年高考数学全国1,3排列组合考查题型 10种策略

2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.

3.解排列组合问题的方法有:

(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)

(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉)

(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)

(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)

(5)多排问题单排法

(6)多元问题分类法

(7)有序问题组合法

(8)选取问题先选后排法

(9)至多至少问题间接法

(10)相同元素分组可采用隔板法

2017年高考数学全国1,3排列组合考查题型 10种策略

2017年高考数学全国1,3排列组合考查题型 10种策略

提醒:(1)探求一个事件发生的概率,关键是分清事件的性质.在求解过程中常应用等价转化思想和分解(分类或分步)转化思想处理,把所求的事件:转化为等可能事件的概率(常常采用排列组合的知识);转化为若干个互斥事件中有一个发生的概率;利用对立事件的概率,转化为相互独立事件同时发生的概率;看作某一事件在n次实验中恰有k次发生的概率,但要注意公式的使用条件.(2)事件互斥是事件独立的必要非充分条件,反之,事件对立是事件互斥的充分非必要条件;(3)概率问题的解题规范:①先设事件A=“…”, B=“…”;②列式计算;③作答.

11.古典概型:

满足以下两个条件的随机试验的概率模型称为古典概型:

(1)有限性:在一次试验中,可能出现的不同的基本事件只有有限个;

(2)等可能性:每个基本事件的发生都是等可能的.

古典概型中事件的概率计算如果一次试验的等可能基本事件共有n个,随机事件A包含了其中m个等可能基本事件,那么事件A发生的概率为P(A)=.

2017年高考数学全国1,3排列组合考查题型 10种策略

2017年高考数学全国1,3排列组合考查题型 10种策略

【应试技巧点拨】

1.求排列应用题的主要方法:

(1)对无限制条件的问题——直接法;

(2)对有限制条件的问题,对于不同题型可采取直接法或间接法,具体如下:

①每个元素都有附加条件——列表法或树图法;

②有特殊元素或特殊位置——优先排列法;

③有相邻元素(相邻排列)——捆绑法;

④有不相邻元素(间隔排列)——插空法;

2.组合问题常有以下两类题型变化:

(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.

(2)“至少”或“最多”含有几个元素的题型:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.

3.解排列、组合的综合应用问题,要按照“先选后排”的原则进行,即一般是先将符合要求的元素取出(组合),再对取出的元素进行排列,常用的分析方法有:元素分析法、位置分析法、图形分析法.要根据实际问题探索分类、分步的技巧,做到层次清楚,条理分明.

4.事件A的概率的计算方法,关键要分清基本事件总数n与事件A包含的基本事件数m.因此必须解决以下三个方面的问题:第一,本试验是否是等可能的;第二,本试验的基本事件数有多少个;第三,事件A是什么?它包含的基本事件有多少.回答好这三个方面的问题,解题才不会出错.

5.几何概型的两个特点:一是无限性,即在一次试验中,基本事件的个数可以是无限的;二是等可能性,即每一个基本事件发生的可能性是均等的.因此,用几何概型求解的概率问题和古典概型的思路是相同的,同属于“比例解法”.即随机事件A的概率可以用“事件A包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占的总面积(总体积、长度)”之比来表示.

6.求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解.一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”“至多”等问题往往用这种方法求解.注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.牢记公式

2017年高考数学全国1,3排列组合考查题型 10种策略

2017年高考数学全国1,3排列组合考查题型 10种策略

8.解答离散型随机变量的分布列及相关问题的一般思路

(1)明确随机变量可能取哪些值.

(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.

(3)根据分布列和期望、方差公式求解.

注意 解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.

【考场经验分享】

1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.分类时要做到不重不漏.对于复杂的计数问题,可以分类、分步综合应用.

2.解决排列、组合问题可遵循“先组合后排列”的原则,区分排列、组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”.

3.要能够写出所有符合条件的排列或组合,尽可能使写出的排列或组合与计算的排列数相符,使复杂问题简单化,这样既可以加深对问题的理解,检验算法的正确与否,又可以对排列数或组合数较小的问题的解决起到事半功倍的效果.

4.几何概型求解时应注意:

(1)对于一个具体问题能否应用几何概型概率公式计算事件的概率,关键在于能否将问题几何化;也可根据实际问题的具体情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于该坐标系中的一个点,使得全体结果构成一个可度量区域.

(2)由概率的几何定义可知,在几何概型中,“等可能”一词应理解为对应于每个试验结果的点落入某区域内的可能性大小仅与该区域的几何度量成正比,而与该区域的位置与形状无关.

5.如果题设条件比较复杂,且备选答案数字较小,靠考虑穷举法求解,如果试题难度较大并和其他知识联系到一起,感觉不易求解,一般不要花费过多的时间,可通过排除法模糊确定,一般可考虑去掉数字最大与最小的答案

本部分内容的基础是概率,高考试题中无论是以古典概型为背景的分布列,还是以独立重复试验为背景的分布列,都要求计算概率.解此类问题的一个难点是正确的理解题意,需特别注意.

【真题演练】

2017年高考数学全国1,3排列组合考查题型 10种策略

2017年高考数学全国1,3排列组合考查题型 10种策略

2017年高考数学全国1,3排列组合考查题型 10种策略

2017年高考数学全国1,3排列组合考查题型 10种策略

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多