分享

UC头条:每日一中考数学压轴题, 第25题

 dhly2008 2017-06-30

考点分析:

相似形综合题.

 1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。

    说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。

 2、三角形相似的判定定理:

    (1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。可简单说成:两角对应相等,两三角形相似。

    (2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。

    (3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。

    (4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

3、相似三角形的性质:

    (1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

    (2)相似三角形性质2:相似三角形周长的比等于相似比。

    说明:以上两个性质简单记为:相似三角形对应线段的比等于相似比。

    (3)相似三角形面积的比等于相似比的平方。

说明:两个三角形相似,根据定义可知它们具有对应角相等、对应边成比例这个性质。

题干分析:

(1)由勾股定理求出AC,由∠CAD=30°,得出DC,由三角函数求出AD即可;

(2)过N作NE⊥AD于E,作NF⊥DC,交DC的延长线于F,则NE=DF,求出∠NCF=75°,∠FNC=15°,由三角函数求出FC,得NE=DF,即可得出结果;

(3)由三角函数求出FN,得出PF,△PMN的面积y=梯形MDFN的面积﹣△PMD的面积﹣△PNF的面积,得出y是x的二次函数,即可得出y的最大值.

解题反思:

本题是相似形综合题目,考查了勾股定理、三角函数、三角形面积的计算、二次函数的最值、等腰直角三角形的性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线运用三角函数和二次函数才能得出结果。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多