任何维的旋转可以表述为向量与合适尺寸的方阵的乘积。最终一个旋转等价于在另一个不同坐标系下对点位置的重新表述。 坐标系旋转角度θ则等同于将目标点围绕坐标原点反方向旋转同样的角度θ。 若以坐标系的三个坐标轴X、Y、Z分别作为旋转轴,则点实际上只在垂直坐标轴的平面上作二维旋转。 假设三维坐标系(右手坐标系,拇指即指向X轴的正方向。伸出食指和中指,如右图所示,食指指向Y轴的正方向,中指所指示的方向即是Z轴的正方向。要确定轴的正旋转方向,用右手的大拇指指向轴的正方向,弯曲手指。那么手指所指示的方向即是轴的正旋转方向)中的某一向量,其在直角坐标系中的图如图1所示。其中点P在XY平面、XZ平面、YZ平面的投影分别为点M、点Q、点N。 一、绕Z轴逆时针旋转θ角 设旋转前的坐标为,旋转后的坐标为,则点M的坐标为,点M’的坐标为。由此可得: 且有;可得绕Z轴旋转角的旋转矩阵为: 三. 绕Y轴逆时针旋转θ角 以上旋转矩阵都是在右手坐标系下计算的。三维旋转矩阵就可由以上三个矩阵相乘得到。 参考: |
|