类型1 操作探究题
1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F.
(1)如图1,若点F与点A重合,求证:AC=BC;
(2)若∠DAF=∠DBA.
①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;
②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.
解:(1)证明:由旋转得,∠BAC=∠BAD,
∵DF⊥AC,
∴∠CAD=90°.
∴∠BAC=∠BAD=45°.
∵∠ACB=90°,
∴∠ABC=45°.
∴AC=BC.
(2)①AF=BE.理由:
由旋转得AD=AB,∴∠ABD=∠ADB.
∵∠DAF=∠ABD,∴∠DAF=∠ADB.
∴AF∥BD.∴∠BAC=∠ABD.
∵∠ABD=∠FAD,由旋转得∠BAC=∠BAD.
∴∠FAD=∠BAC=∠BAD=1/3×180°=60°.
由旋转得,AB=AD.∴△ABD是等边三角形.∴AD=BD.
在△AFD和△BED中:1.∠F=.∠BED=90°;2.AD=BD; 3.∠FAD=∠EBD,∴△AFD≌△BED(AAS).∴AF=BE.
②如图
由旋转得∠BAC=∠BAD.
∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,
由旋转得AD=AB,
∴∠ABD=∠ADB=2∠BAD.
∵∠BAD+∠ABD+∠ADB=180°,
∴∠BAD+2∠BAD+2∠BAD=180°.∴∠BAD=36°.
设BD=a,作BG平分∠ABD,
∴∠BAD=∠GBD=36°.∴AG=BG=BD=a.
∴DG=AD-AG=AD-BG=AD-BD.
∵∠BDG=∠ADB,∴△BDG∽△ADB.
∴BD/AD=DG/DB.∴BD/AD=(AD-BD)/BD∴AD/BD=(1+根号5)/2。
∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED.
∴BD/AD=BE/AF.∴AF=BD/AD·BE=(1+根号5)/2*x.
2.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
解:(1)证明:延长ED交AG于点H,
∵点O是正方形ABCD两对角线的交点,
∴OA=OD,OA⊥OD.
在△AOG和△DOE中,1.OA=OD;2.∠AOG=∠DOE=90°;3.OG=OE
∴△AOG≌△DOE.∴∠AGO=∠DEO.
∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°.
∴∠AHE=90°,即DE⊥AG.
(2)①在旋转过程中,∠OAG′成为直角有两种情况:
(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
∵OA=OD=1/2*OG=1/2*OG′,
∴在Rt△OAG′中,sin∠AG′O=OA/OG′=1/2
∴∠AG′O=30°.
∵OA⊥OD,OA⊥AG′,∴OD∥AG′.
∴∠DOG′=∠AG′O=30°,即α=30°.
(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
同理可求∠BOG′=30°,∴α=180°-30°=150°.
综上所述,当∠OAG′=90°时,α=30°或150°.
②AF′的最大值为2分子根号2+2,此时α=315°.
提示:如图
当旋转到A,O,F′在一条直线上时,AF′的长最大,
∵正方形ABCD的边长为1,
∴OA=OD=OC=OB=2分子根号2.
∵OG=2OD,∴OG′=OG=.∴OF′=2.
∴AF′=AO+OF′=2分子根号2+2.∵∠COE′=45°,∴此时α=315°.
3.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.
(1)当AN平分∠MAB时,求DM的长;
(2)连接BN,当DM=1时,求△ABN的面积;
(3)当射线BN交线段CD于点F时,求DF的最大值.
解:(1)由折叠可知△ANM≌△ADM,
∴∠MAN=∠DAM.
∵AN平分∠MAB,
∴∠MAN=∠NAB.
∴∠DAM=∠MAN=∠NAB.
∵四边形ABCD是矩形,
∴∠DAB=90°.∴∠DAM=30°.
∴DM=AD·tan∠DAM=3×3分子根号3=根号3。
(2)如图1,延长MN交AB延长线于点Q.
∵四边形ABCD是矩形,∴AB∥DC.
∴∠DMA=∠MAQ.
由折叠可知△ANM≌△ADM,
∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1.
∴∠MAQ=∠AMQ.
∴MQ=AQ.
设NQ=x,则AQ=MQ=1+x.
在Rt△ANQ中,AQ2=AN平方+NQ平方,
∴(x+1)平方=3的平方+x的平方.解得x=4.
∴NQ=4,AQ=5.
∵AB=4,AQ=5,
∴SΔNAB=4/5*S,ΔNAQ=4/5·1/2·AN·NQ=24/5.
(3)如图2,过点A作AH⊥BF于点H,则△ABH∽△BFC,∴BH/AH=CF/BC.
∵AH≤AN=3,AB=4,
∴当点N,H重合(即AH=AN)时,DF最大.(AH最大,BH最小,CF最小,DF最大)
此时M,F重合,B,N,M三点共线,△ABH≌△BFC(如图3),
∴DF的最大值为4-根号7
图1
类型2 动态探究题
4.(2016·自贡)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.
(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.若△OCP与△PDA的面积比为1∶4,求边CD的长;
(2)如图2,在(1)的条件下,擦去折痕AO,线段OP,连接BP.动点M在线段AP上(点M与点P,A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M,N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.
解:(1)∵四边形ABCD是矩形,∴∠C=∠D=90°.
∴∠APD+∠DAP=90°.
∵由折叠可得∠APO=∠B=90°,
∴∠APD+∠CPO=90°.∴∠CPO=∠DAP.
又∵∠D=∠C,∴△OCP∽△PDA.∵△OCP与△PDA的面积比为1∶4,
设OP=x,则CO=8-x.在Rt△PCO中,∠C=90°,
由勾股定理得
,解得x=5.∴AB=AP=2OP=10.∴CD=10.
(2)过点M作MQ∥AN,交PB于点Q.
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP=∠MQP.
∴MP=MQ.∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=0.5PQ.
∵MQ∥AN,∴∠QMF=∠BNF.
在△MFQ和△NFB中,1.∠QFM=∠NFB;2.∠QMF=∠BNF;3.MQ=BN
∴△MFQ≌△NFB(AAS).∴QF=BF=0.5QB.
∴EF=EQ+QF=0.5PQ+0.5QB=0.5PB.由(1)中的结论可得PC=4,BC=8,∠C=90°,
∴在(1)的条件下,当点M,N在移动过程中,线段EF的长度不变,它的长度为2*根号5.
5.如图,在直角坐标系xOy中,矩形OABC的顶点A,C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C,B重合),连接OP,AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且∠AOP=∠COM,令CP=x,MP=y.
(1)当x为何值时,OP⊥AP?
(2)求y与x的函数关系式,并写出x的取值范围;
(3)在点P的运动过程中,是否存在x,使△OCM的面积与△ABP的面积之和等于△EMP的面积.若存在,请求x的值;若不存在,请说明理由.
解:(1)由题意知OA=BC=5,AB=OC=2,∠B=∠OCM=90°,BC∥OA.
∵OP⊥AP,
∴∠OPC+∠APB=∠APB+∠PAB=90°.
∴∠OPC=∠PAB.
∴△OPC∽△PAB.
解得x1=4,x2=1(不合题意,舍去).
∴当x=4时,OP⊥AP.
(2)∵BC∥OA,∴∠CPO=∠AOP.
∵∠AOP=∠COM,∴∠COM=∠CPO.
∵∠OCM=∠PCO,∴△OCM∽△PCO.
∴y=x-4/x(2<x<5).
(3)存在x符合题意.过点E作ED⊥OA于点D,交MP于点F,则DF=AB=2.
∵△OCM与△ABP面积之和等于△EMP的面积,
∴S△EOA=S矩形OABC=2×5=1/2·5ED.
∴ED=4,EF=2.
∵PM∥OA,∴△EMP∽△EOA.
解得y=5/2.
6.如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿O
B方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.
(1)当t=5时,请直接写出点D,点P的坐标;
(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;
(3)点P在线段AB或线段BC上运动时,作
PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.
解:(1)D(-4,3),P(-12,8).
(2)当点P在边AB上时,BP=6-t.
∴S=0.5BP·AD=0.5(6-t)·8=-4t+24.
当点P在边BC上时,BP=t-6.
∴S=0.5BP·AB=0.5(t-6)·6=3t-18.
类型3 类比探究题
7.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.
(1)求证:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,1.AB=BC;2.PB=PB;3.∠ABP=∠CBP
∴△ABP≌△CBP(SAS).∴PA=PC.
又∵PA=PE,∴PC=PE.
(2)由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP.∴∠DAP=∠DCP.
∵PA=PE,∴∠DAP=∠E.
∴∠DCP=∠E.
∵∠CFP=∠EFD(对顶角相等),
∴180°-∠PFC-∠PCF=180°-∠DFE-∠E,
即∠CPF=∠EDF=90°.
(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,
在△ABP和△CBP中,1.AB=BC;2.PB=PB;3.∠ABP=∠CBP
∴△ABP≌△CBP(SAS).
∴PA=PC,∠BAP=∠BCP.
∵PA=PE,∴PC=PE.∴∠DAP=∠DCP.
∵PA=PE,∴∠DAP=∠AEP.
∴∠DCP=∠AEP.
∵∠CFP=∠EFD(对顶角相等),
∴180°-∠PFC-∠PCF=180°-∠DFE-∠AEP,
即∠CPF=∠EDF=180°-∠ADC=180°-120°=60°.
∴△EPC是等边三角形.∴PC=CE.
∴AP=CE.
8.已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.
(1)如图1,当四边形ABCD和EFCG均为正方形时,连接BF.
①求证:△CAE∽△CBF;
②若BE=1,AE=2,求CE的长;
(2)如图2,当四边形ABCD和EFCG均为矩形,且AB/BC=EF/FC=k时,若BE=1,AE=2,CE=3,求k的值;
(3)如图3,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
解:(1)证明:①∵四边形ABCD和EFCG均为正方形,
∴∠ACB=45°,∠ECF=45°.
∴∠ACB-∠ECB=∠ECF-∠ECB,
即∠ACE=∠BCF.
∴△CAE∽△CBF.
②∵△CAE∽△CBF,∴∠CAE=∠CBF,AE/BF=根号2.
∴BF=根号2.
又∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,即∠EBF=90°.
解得CE=根号6.
(2)连接BF,
∵AB/BC=EF/FC=k,∠CFE=∠CBA,
∴△CFE∽△CBA.
∴∠ECF=∠ACB,CE/CF=AC/BC.
∴∠ACE=∠BCF.∴△ACE∽△BCF.∴∠CAE=∠CBF.
∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,
题型2 与圆有关的几何综合题
9.(2016·成都)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.
(1)求证:△ABD∽△AEB;
(2)当BC(AB)=3(4)时,求tanE;
(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.
解:(1)证明:∵∠ABC=90°,∴∠ABD=90°-∠DBC.
∵DE是直径,
∴∠DBE=90°.
∴∠E=90°-∠BDE.
∵BC=CD,∴∠DBC=∠BDE.
∴∠ABD=∠E.
∵∠BAD=∠DAB,∴△ABD∽△AEB.
10.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.
(1)试判断BD与⊙O的位置关系,并说明理由;
(2)当AB=BE=1时,求⊙O的面积;
(3)在(2)的条件下,求HG·HB的值.
解:(1)直线BD与⊙O
相切.理由:连接OB.
∵BD是Rt△ABC斜边上的中线,∴DB=DC.
∴∠DBC=∠C.
∵OB=OE,
∴∠OBE=∠OEB.
又∵∠OEB=∠CED,∴∠OBE=∠CED.
∵DF⊥AC,∴∠CDE=90°.
∴∠C+∠CED=90°.
∴∠DBC+∠OBE=90°.
∴BD与⊙O相切.
(2)连接AE.
在Rt△ABE中,AB=BE=1,∴AE=根号2.
∵DF垂直平分AC,∴CE=AE=根号2.∴BC=1+根号2.
∵∠C+∠CAB=90°,∠DFA+∠CAB=90°,∴∠ACB=∠DFA.
又∠CBA=∠FBE=90°,A
B=BE,∴△CAB≌△FEB.
(3)∵AB=BE,∠ABE=90°,
∴∠AEB=45°.
∵EA=EC,∴∠C=22.5°.
∴∠H=∠BEG=∠CED=90°-22.5°=67.5°.
∵BH平分∠CBF,
∴∠EBG=∠HBF=45°.
∴∠BGE=∠BFH=67.5°.
11.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.
(1)试说明CE是⊙O的切线;
(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;
(3)设点D是线段AC上任意一点(不含端点
),连接OD,当1/2CD+OD的最小值为6时,求⊙O的直径AB的长.
解:(1)证明:连接OC.
∵CA=CE,∠CAE=30°,
∴∠E=∠CAE=30°,∠COE=2∠A=60°.
∴∠OCE=90°.
∴CE是⊙O的切线.
12.如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的反向延长线上,EP=EG,
(1)求证:直线EP为⊙O的切线;
(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF·BO.试证明BG=PG;
(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=根号3/3.求弦CD的长.
解:(1)证明:连接OP.
∵EP=EG,
∴∠EGP=∠EGP.又∵∠EGP=∠BGF,
∴∠EPG=∠BGF.∵OP=OB,
∴∠OPB=∠OBP.∵CD⊥AB,∴∠BGF+∠OBP=90°.
∴∠EPG+∠OPB=90°,即∠EPO=90°.∴直线EP为⊙O的切线.
(2)证明:连接OG,AP.∵BG2=BF·BO,∴BG/BO=BF/BG
又∵∠GBF=∠OBG,∴△BFG∽△BGO.
∴∠BGF=∠BOG,∠BGO=∠BFG=90°.
∵∠APB=∠OGB=90°,∴OG∥AP.又∵AO=BO,∴BG=PG.
13.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB,OA的交点分别为C,D,连接CD,QC.
(1)当t为何值时,点Q与点D重合?
(2)当⊙Q经过点A时,求⊙P被OB截得的弦长;
(3)若⊙P与线段QC只有一个公共点,求t的取值范围.