定义在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。
对数函数的底数为什么要大于0且不为1? 【在一个普通对数式里 a<>
log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)】
通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学技术中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN 记为In N。根据对数的定义,可以得到对数与指数间的关系:
当a>0,a≠1时,aX=N→X=logaN。(N>0)
由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:
在实数范围内,负数和零没有对数
logaa=1
log以a为底a的对数为1(a为常数) 恒过点(1,0)
性质定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1
和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}
值域:实数集R,显然对数函数无界。
定点:函数图像恒过定点(1,0)。
单调性:a>1时,在定义域上为单调增函数;
0 <><>
奇偶性:非奇非偶函数
周期性:不是周期函数
对称性:无
最值:无
零点:x=1
注意:负数和0没有对数。
两句经典话:底真同对数正,底真异对数负。解释如下:
也就是说:若y=logab (其中a>0,a≠1,b>0)
当<><><><1时,y=logab>0;
当a>1, b>1时,y=logab>0;
当0<><1,b>1时,y=logab<>
当a>1, 0 <><><>
指数函数的求导:
e的定义:e=lim(x→∞)(1+1/x)x=2.718281828...
设a>0,
a!=1----(log a(x))'
=lim(Δx→0)((log a(x+Δx)-log a(x))/Δx)
=lim(Δx→0)(1/x*x/Δx*log a((x+Δx)/x))
=lim(Δx→0)(1/x*log a((1+Δx/x)x/Δx))
=1/x*lim(Δx→0)(log a((1+Δx/x)x/Δx))
=1/x*log a(lim(Δx→0)(1+Δx/x)x/Δx)
=1/x*log a(e)
特殊地,当a=e时,(log a(x))'=(ln x)'=1/x。
----设y=ax两边取对数ln y=xln a两边对求x导y'/y=ln ay'=yln a=a^xln a
特殊地,当a=e时,y'=(ax)'=(ex)'=e^ln ex=ex。
运算性质
一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。
底数则要>0且≠1 真数>0
并且,在比较两个函数值时:
如果底数一样,真数越大,函数值越大。(a>1时)
如果底数一样,真数越小,函数值越大。(0<><>
当a>0且a≠1时,M>0,N>0,那么:
(1)loga(MN)=logaM+logaN;
(2)loga(M/N)=logaM-logaN;
(3)logaMn=nlogaM(n∈R)
(4)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(5)a(log(b)n)=n(log(b)a) 证明:
设a=nx则alog(b)n=(nx)log(b)n=n(x*log(b)n)=nlog(b)(n^x)=n(log(b)a)
(6)对数恒等式:alog(a)N=N;log(a)ab=b
(7)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,
log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
表达方式(1)常用对数:lg(b)=log10b(10为底数)
(2)自然对数:ln(b)=logeb(e为底数)
e为无限不循环小数,通常情况下只取e=2.71828 对数函数的定义
与指数的关系同底的对数函数与指数函数互为反函数。
当a>0且a≠1时,ax=N x=㏒(a)N。
关于y=x对称。
对数函数的一般形式为 y=㏒(a)x,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、
可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。