典型例题分析1: 如图,一次函数y=k1x+b(k1≠0)与反比例函数y=k2/x(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1). (1)求这两个函数的表达式; (2)在x轴上是否存在点P(n,0),使△ABP为直角三角形,请你直接写出P点的坐标. 典型例题分析2: 考点分析: 反比例函数与一次函数的交点问题. 题干分析: (1)设直线AB的解析式为y=kx+b(k≠0),将A与B坐标代入求出k与b的值,确定出直线AB的解析式,将D坐标代入直线AB解析式中求出a的值,确定出D的坐标,将D坐标代入反比例解析式中求出m的值,即可确定出反比例解析式; (2)联立两函数解析式求出C坐标,过C作CH垂直于x轴,在直角三角形OCH中,由OH与HC的长求出tan∠COH的值,利用特殊角的三角函数值求出∠COH的度数,在三角形AOB中,由OA与OB的长求出tan∠ABO的值,进而求出∠ABO的度数,由∠ABO﹣∠COH即可求出∠ACO的度数. |
|
来自: 老史pen4e4zmum > 《初中数学》