分享

硅基双结叠层电池的应用前景(下篇)

 zq5318 2019-03-06

前面我们讲到,目前顶电池有两种潜在候选材料:III-V族半导体和钙钛矿。

那么,这两种候选材料各有何优劣?

首先,III-V族半导体顶电池可与晶硅底电池配合使用。由于晶格失配和温度收支现象,两种材料无法直接用外延法生长在一起。

目前,III-V族半导体顶电池与晶硅底电池的双结叠层组合已在实验室中达到了32.8%的转换效率[7]。不过,这种电池技术的成本比晶硅电池高出了一个数量级。用外延法生长在锗或砷化镓晶片表面,再进行剥离和转移,似乎是最可行的做法,不过这在技术和经济性方面是否可行,尚有待证明。图7所示为上述结构的截面示意图[8]。

目前,我们认为该技术在经济性上未达到量产标准。

图7:磷化镓铟/硅基双结叠层太阳能电池的结构示意图[8]

第二个选项是采用钙钛矿太阳能电池作为顶电池。近年来,全球各地的实验室在钙钛矿电池研发方面都取得了重大进展。钙钛矿单结电池的转换效率已超过20%。2018年6月,牛津光伏(Oxford PV)公司成功开发出效率高达27.3%的钙钛矿/硅基双结叠层电池,首次打破了单结晶硅电池26.6%的世界纪录[9]。

钙钛矿是一种前景非常广阔的吸收体材料。它们属于直接带隙半导体,因此其作为太阳能电池的吸收体材料时,厚度只需达到1 µm即可。禁带宽度的调整范围为1.5 eV左右至1.7 eV以上。而且,即便采用低成本沉积技术,也能实现出色的复合特性。其开路电压也正在逐步逼近肖克利-奎伊瑟极限。

钙钛矿太阳能电池在短时间内就能取得如此惊人的进展,着实令人印象深刻,但钙钛矿/硅基双结叠层电池在实现量产之前,还需要克服不少难关。

挑战1

最大的挑战就是如何确保钙钛矿电池的长期稳定性。标准组件可以在恶劣的户外气候条件下耐受25-30年,而钙钛矿在几分钟之内便会退化。不过,这方面目前也已取得显著进展:钙钛矿/硅基双结叠层电池与双玻组件技术相结合,可以通过DH1000或TC200试验[10]。目前,研发人员正在努力提高钙钛矿/硅基双结叠层电池抵抗紫外线辐射、湿气、高温和氧气的能力。

挑战2

第二项挑战在于要将不足1cm²的实验室级电池提升到正常硅片大小。这需要进行大量的工程设计,不过可以借助晶硅电池、薄膜电池及蓄电池生产中成熟的沉积技术,因此该项挑战不至于成为根本性障碍。

挑战3

钙钛矿通常含有铅、铯等剧毒元素。目前,这一点不会影响其在光伏组件中的使用,因为晶硅电池组件的焊带和金属化浆料中也含有铅。不过,未来新的法规也许会限制光伏组件使用有毒材料。如有需要,浆料和焊带中的铅可以轻而易举地找到替代品。但铅是构成钙钛矿的主要元素之一,目前还无法被取代。

钙钛矿/硅基双结叠层电池及组件结构

原则上来说,双结叠层电池组件有两种设计方法。一种方法是采用集成一体化结构:将底电池和顶电池集成在同一个电池片(如图8所示),再按照标准晶硅电池的工艺将双结叠层电池连接起来,形成电池组件。另一种方法是将顶电池和底电池分开,制成两个组件,然后再串联叠放并封装在一起。底电池组件的敷设多多少少有标准可循。顶电池组件可采用薄膜叠瓦技术。这种方法的优点在于顶电池和底电池之间不需要电流匹配,缺点在于接触和电池连接的工作量翻倍。

我们相信,在协同效应、成本和生产良率方面,第一种方法的前景更加光明。此外,就目前的生产技术而言,这种方法所需要的改动也少得多。因此,我们将重点关注一体化双端叠层电池。

图8:典型的一体化双结叠层电池结构[11]

底电池

底电池可以采用P型硅片或N型硅片。虽然大多数实验室项目都采用N型异质结电池,但P型电池其实也是可行的。其中,顶电池和底电池的极性需要相匹配,这一点至关重要。在集成一体化型电池结构中,顶电池通常采用“反型”结构,将P层作为底层。这意味着底电池也需要将P接触层作为底层,这一点可以通过背结N型电池或常规的P型电池来实现。

不论是N型电池还是P型电池,都需要在顶电池形成隧穿结以及一层(导电)光学层。底电池正面无需镀减反射膜,也无需金属化。由于底电池不导电,因此不适合采用标准氮化硅正面钝化工艺,可以选择晶硅/氧化铟锡(a-Si/ITO)异质结技术,或选择带ITO覆盖层的多晶硅钝化接触作为光学元件。

目前,钙钛矿沉积工艺还不适用于制绒表面,因此底电池的正面需要进行抛光。不过,只要背面是制绒表面,正面抛光只会造成些微损耗。

顶电池

顶电池通常采用反型结构,第一层为空穴传输层(HTL),可采用贺利氏生产的氧化镍或PEDOT:PSS。空穴传输层必须足够薄,以防止红外寄生吸收。

钙钛矿吸收体层的禁带宽度可调整至1.55-1.6 eV,以便用于双面电池。许多论文特别关注如何提高钙钛矿的禁带宽度,使其达到1.7-1.8 eV,并且设法解决宽禁带材料的潜在损耗较高这一问题。机缘巧合的是,在确定与双面电池相匹配的电流时,恰好可以选用最合适的钙钛矿种类。

对于电子传输层(ETL)来说,PCBM聚合物是一个不错的选择,其次是用于横向导电并作为减反射膜的ITO层。

金属化和电池连接

钙钛矿只能承受130-150 °C的温度,因此无法采用温度高达900 °C左右的标准烧结工艺,而必须用低温银浆取代标准银浆或铝浆。贺利氏可根据烧结温度和烧结时间的具体要求为客户提供定制浆料。

如果采用PERC电池作为底电池,那么目前还没有合适的低温铝浆。晶硅和铝的共晶温度为577 °C,要在低于这个温度的情况下形成局部背场可能比较困难。因此,背面金属化必须在顶电池沉积之前完成印刷和烧结。不过,这种无法保证清洁度的金属化工艺(含粉尘及有机残留物)可能会对后续工艺及顶电池的质量产生不利影响。此外,还可以选择涂覆背银栅线,该工艺目前在双面异质结技术和隧穿氧化层钝化接触(TopCon)技术中均有使用。

在任何情况下,正面(和背面)的低温银栅线的电阻率均高于标准银栅线。因此,虽然电流减半,但建议选择多主栅(MBB)结构来降低串联电阻,减少银浆用量。多栅线连接和低温焊锡涂层有可能成为电池连接工艺的理想选择。此外,也可以考虑采用导电胶的叠瓦技术。贺利氏可根据固化温度的具体要求为客户提供定制导电胶。由于电流只有5A左右,半片电池组件很可能没有明显优势。

封装
相对来说,钙钛矿对湿度等环境因素更加敏感,因此优选双玻组件。考虑到近期1.5-2 mm玻璃取得的技术进步,对于任何双面组件来说,双玻结构都是优选解决方案。根据我们的计算,无框双玻组件的生产成本已经低于标准有框玻璃背板组件。
 系统
每块组件的电压提高了一倍以上;每片电池的开路电压从700 mV左右提高到1800 mV左右。如果将60片电池串联形成组件,总开路电压将达到108 V。因此,电池串长度必须大幅缩减,使电压处于1000 V或1500 V以下。若要解决这一问题,可以将多个子串并联(例如类似基于半片电池的组件设计),或采用组件级直流优化器或微型逆变器。
成本
技术可行性解决之后,下一个问题自然是双结叠层电池技术在经济上可行吗?图9所示为当前市场价下无框双玻组件的生产成本。比较双面PERC单结电池与上述双结叠层电池的生产成本,可以发现双结叠层电池的效率需高出约4-5%(绝对值),其组件生产成本才会与双面PERC单结电池持平。如图6所示,这要求顶电池的效率达到20%左右。

图9:单结电池和双结叠层电池的组件生产成本与电池效率的关系

由于光伏平衡系统(BOS)带来的额外成本,从系统层面来看,每瓦组件价格会随着组件效率的提高而上涨。图10显示了当组件效率提升时,为保持光伏系统成本不变,组件价格的上涨空间。根据不同的BOS成本,组件效率每提高1%(绝对值),组件价格可提高约0.01欧元/瓦。

因此,双结叠层电池所需要的效率增益可以更低:只需要2-3%(绝对值)即可,不用达到5%(绝对值)。这样,组件生产成本只增加不到0.02欧元/瓦,而且可以转嫁到组件价格上。

图10:在保持光伏系统成本不变的前提下,组件价格的允许上涨空间与组件效率的关系。

结论

钙钛矿太阳能电池如今已成为双结叠层电池的可行解决方案,可搭配晶硅底电池,并且在全球各地的多家实验室内都取得了良好的试验成果。未来几年内,有望开发出转换效率比单结晶硅电池高出2-3%(绝对值)的双结叠层电池。钙钛矿双结叠层电池在经济性方面也颇具吸引力。目前最大的挑战依然是钙钛矿电池缺乏长期稳定性。

主流晶硅电池与组件技术的发展也令钙钛矿双结叠层电池受益匪浅,如多主栅连接和双玻双面组件。要将钙钛矿顶电池直接叠加在PERC底电池上似乎颇具挑战性,不过可以选择异质结电池或TopCon电池作为底电池,从而进一步推动未来电池技术的发展。


凭借我们的低温银浆、PEDOT:PSS和导电胶,贺利氏将为客户开发钙钛矿双结叠层电池技术提供一臂之力。

钙钛矿电池目前还存在许多问题,因此距离实现量产还有很长的一段路。不过,此类电池是目前唯一有望突破肖克利-奎伊瑟(Shockley-Queisser)极限、光电转换效率达到30%以上的可行解决方案。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多