版权声明:欢迎交流学习,转载请注明出处。 https://blog.csdn.net/qq_23869697/article/details/80610361
一、期望
1.离散随机变量的X的数学期望:##
E(X)=∑∞k=1xkpkE(X)=k=1∑∞xkpk

2.连续型随机变量X的数学期望:##
E(X)=∫+∞−∞xf(x)dxE(X)=∫−∞+∞xf(x)dx



3.常见分布的期望##
1)泊松分布的期望等于λλ;
2)均匀分布的期望位于区间的中心;
3) 高斯分布的期望为μμ
4)二项分布的期望为npnp
4.期望的性质##
常数的期望等于该常数;
E(CX)=CE(X)E(CX)=CE(X);
E(X+Y)=E(X)+E(Y)E(X+Y)=E(X)+E(Y);
X,YX,Y独立时,E(XY)=E(X)E(Y)E(XY)=E(X)E(Y)
#二、 方差
研究随机变量与其均值的偏离程度,记为:
D(X)=E[X−E(X)]2D(X)=E[X−E(X)]2
##1.均方差,标准差##
σ(X)=E[X−E(X)]2−−−−−−−−−−−−√σ(X)=E[X−E(X)]2
##2.方差的计算##
把E[X−E(X)]2E[X−E(X)]2看做函数g(X)g(X), 方差相当于求g(X)g(X)的期望。
对于离散的:D(X)=∑∞k=1[xk−E(X)]2pkD(X)=k=1∑∞[xk−E(X)]2pk
对于连续的:D(X)=∫+∞−∞[xk−E(X)]2f(x)dxD(X)=∫−∞+∞[xk−E(X)]2f(x)dx
实际中常用下面公式计算:
D(X)=E(X2)−[E(X)]2D(X)=E(X2)−[E(X)]2
3.常见分布的方差
1)高斯分布的方差σ2σ2
2) 0-1分布的方差为D(X)=p(1−p)D(X)=p(1−p)
3) 泊松分布的方差为λλ
4) 均匀分布的方差为(b−a)21212(b−a)2
5)指数分布f(x)=1θe−x/θf(x)=θ1e−x/θ的方差为 θ2θ2
##4. 性质

三、协方差
描述两个变量的相关性
Cov=E[X−E(X)][Y−E(Y)]Cov=E[X−E(X)][Y−E(Y)]
相关系数
ρXY=Cov(X,Y)D(X)√D(Y)√ρXY=D(X)D(Y)Cov(X,Y)
ρXY=0ρXY=0, 两个变量不相关


四、协方差矩阵

推广到多维:

对于连续的情况:

例子:
可以参考下面的博客:
详解协方差与协方差矩阵:https://blog.csdn.net/ybdesire/article/details/6270328
参考: 概率论与数理统计 浙大
|