分享

最小二乘法用于直线,多项式,圆,椭圆的拟合及程序实现

 战神之家 2019-04-09

最小二乘法是一种优化算法,最小二乘法名字的缘由有两个:一是要将误差最小化,二是将误差最小化的方法是使误差的平方和最小化。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合,所拟合的曲线可以是线性拟合与非线性拟合。

--------------------一元线性函数--------------------

形式1:借用案例(http://blog.csdn.net/qll125596718/article/details/8248249)首先以一元线性方程参数估计为例,样本回归模型:


残差平方和:


则通过Q最小确定这条直线,即确定,以为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:


解得:

实例(c++):
  1. #include <iostream>
  2. #include <algorithm>
  3. #include <valarray>
  4. #include <vector>
  5. using namespace std;
  6. int main()
  7. {
  8. double x[] = { 1, 2, 3, 4, 5, 6 };
  9. double y[] = { 3, 5.5, 6.8, 8.8, 11, 12};
  10. valarray<double> data_x(x, 6);
  11. valarray<double> data_y(y, 6);
  12. float A = 0.0;
  13. float B = 0.0;
  14. float C = 0.0;
  15. float D = 0.0;
  16. A = (data_x*data_x).sum();
  17. B = data_x.sum();
  18. C = (data_x*data_y).sum();
  19. D = data_y.sum();
  20. float tmp = A*data_x.size() - B*B;
  21. float k, b;
  22. k = (C*data_x.size() - B*D) / tmp;
  23. b = (A*D - C*B) / tmp;
  24. cout << "y=" << k << "x+" << b << endl;
  25. return 0;
  26. }
运行结果:


注:valarray类似vector,也是一个模板类,主要用来对一系列元素进行高速的数字计算,其与vector的主要区别在于以下两点:
1、valarray定义了一组在两个相同长度和相同类型的valarray类对象之间的数字计算;
2、通过重载operater[],可以返回valarray的相关信息(valarray其中某个元素的引用、特定下标的值或者其某个子集)。

valarray类构造函数:
valarray( );
explicit valarray(size_t _Count);
valarray( const Type& _Val, size_t _Count);
valarray( const Type* _Ptr, size_t _Count);
valarray( const slice_array<Type>& _SliceArray);
valarray( const gslice_array<Type>& _GsliceArray);
valarray( const mask_array<Type>& _MaskArray);
valarray( const indirect_array<Type>& _IndArray);

valarray 类用法:
1. apply 将 valarray 数组的每一个值都用 apply 所接受到的函数进行计算
2. cshift 将 valarray 数组的数据进行循环移动,参数为正者左移为负就右移
3. max 返回 valarray 数组的最大值
4. min 返回 valarray 数组的最小值
5. resize 重新设置 valarray 数组大小,并对其进行初始化
6. shift 将 valarray 数组移动,参数为正者左移,为负者右移,移动后由 0 填充剩余位
7. size 得到数组的大小
8. sum 数组求和

--------------------N元线性函数--------------------

一元线性方程可以看做多元函数的特例,现在用矩阵形式表述多元函数情况下,最小二乘的一般形式:

 设拟合多项式为:

                   

各点到这条曲线的距离之和,即偏差平方和如下:

                

对等式右边求ai偏导数,得到: 

              

             

                            .......

             

把这些等式表示成矩阵的形式,就可以得到下面的矩阵:

                (3)

进行化简计算:

           , 

上面公式(3)可以写为:

                   

              

  1. #include "stdio.h"
  2. #include "stdlib.h"
  3. #include "math.h"
  4. #include "vector"
  5. using namespace std;
  6. struct point
  7. {
  8. double x;
  9. double y;
  10. };
  11. typedef vector<double> doubleVector;
  12. vector<point> getFile(char *File); //获取文件数据
  13. doubleVector getCoeff(vector<point> sample, int n); //矩阵方程
  14. void main()
  15. {
  16. int i, n;
  17. char *File = "XY.txt";
  18. vector<point> sample;
  19. doubleVector coefficient;
  20. sample = getFile(File);
  21. printf("拟合多项式阶数n=");
  22. scanf_s("%d", &n);
  23. coefficient = getCoeff(sample, n);
  24. printf("\n拟合矩阵的系数为:\n");
  25. for (i = 0; i < coefficient.size(); i++)
  26. printf("a%d = %lf\n", i, coefficient[i]);
  27. }
  28. //矩阵方程
  29. doubleVector getCoeff(vector<point> sample, int n)
  30. {
  31. vector<doubleVector> matFunX; //公式3左矩阵
  32. vector<doubleVector> matFunY; //公式3右矩阵
  33. doubleVector temp;
  34. double sum;
  35. int i, j, k;
  36. //公式3左矩阵
  37. for (i = 0; i <= n; i++)
  38. {
  39. temp.clear();
  40. for (j = 0; j <= n; j++)
  41. {
  42. sum = 0;
  43. for (k = 0; k < sample.size(); k++)
  44. sum += pow(sample[k].x, j + i);
  45. temp.push_back(sum);
  46. }
  47. matFunX.push_back(temp);
  48. }
  49. //printf("matFunX.size=%d\n", matFunX.size());
  50. //printf("matFunX[3][3]=%f\n", matFunX[3][3]);
  51. //公式3右矩阵
  52. for (i = 0; i <= n; i++)
  53. {
  54. temp.clear();
  55. sum = 0;
  56. for (k = 0; k < sample.size(); k++)
  57. sum += sample[k].y*pow(sample[k].x, i);
  58. temp.push_back(sum);
  59. matFunY.push_back(temp);
  60. }
  61. printf("matFunY.size=%d\n", matFunY.size());
  62. //矩阵行列式变换
  63. double num1, num2, ratio;
  64. for (i = 0; i < matFunX.size() - 1; i++)
  65. {
  66. num1 = matFunX[i][i];
  67. for (j = i + 1; j < matFunX.size(); j++)
  68. {
  69. num2 = matFunX[j][i];
  70. ratio = num2 / num1;
  71. for (k = 0; k < matFunX.size(); k++)
  72. matFunX[j][k] = matFunX[j][k] - matFunX[i][k] * ratio;
  73. matFunY[j][0] = matFunY[j][0] - matFunY[i][0] * ratio;
  74. }
  75. }
  76. //计算拟合曲线的系数
  77. doubleVector coeff(matFunX.size(), 0);
  78. for (i = matFunX.size() - 1; i >= 0; i--)
  79. {
  80. if (i == matFunX.size() - 1)
  81. coeff[i] = matFunY[i][0] / matFunX[i][i];
  82. else
  83. {
  84. for (j = i + 1; j < matFunX.size(); j++)
  85. matFunY[i][0] = matFunY[i][0] - coeff[j] * matFunX[i][j];
  86. coeff[i] = matFunY[i][0] / matFunX[i][i];
  87. }
  88. }
  89. return coeff;
  90. }
  91. //获取文件数据
  92. vector<point> getFile(char *File)
  93. {
  94. int i = 1;
  95. vector<point> dst;
  96. FILE *fp=fopen(File, "r");
  97. if (fp == NULL)
  98. {
  99. printf("Open file error!!!\n");
  100. exit(0);
  101. }
  102. point temp;
  103. double num;
  104. while (fscanf(fp, "%lf", &num) != EOF)
  105. {
  106. if (i % 2 == 0)
  107. {
  108. temp.y = num;
  109. dst.push_back(temp);
  110. }
  111. else
  112. temp.x = num;
  113. i++;
  114. }
  115. fclose(fp);
  116. return dst;
  117. }

XY.txt内容:

  1. 0 1.0
  2. 0.25 1.28
  3. 0.5 1.65
  4. 0.75 2.12
  5. 1 2.72

另外在http://blog.csdn.net/lsh_2013/article/details/46697625里也有相关程序:

  1. #include <iostream>
  2. #include <vector>
  3. #include <cmath>
  4. using namespace std;
  5. //最小二乘拟合相关函数定义
  6. double sum(vector<double> Vnum, int n);
  7. double MutilSum(vector<double> Vx, vector<double> Vy, int n);
  8. double RelatePow(vector<double> Vx, int n, int ex);
  9. double RelateMutiXY(vector<double> Vx, vector<double> Vy, int n, int ex);
  10. void EMatrix(vector<double> Vx, vector<double> Vy, int n, int ex, double coefficient[]);
  11. void CalEquation(int exp, double coefficient[]);
  12. double F(double c[],int l,int m);
  13. double Em[6][4];
  14. //主函数,这里将数据拟合成二次曲线
  15. int main(int argc, char* argv[])
  16. {
  17. double arry1[5]={0,0.25,0,5,0.75};
  18. double arry2[5]={1,1.283,1.649,2.212,2.178};
  19. double coefficient[5];
  20. memset(coefficient,0,sizeof(double)*5);
  21. vector<double> vx,vy;
  22. for (int i=0; i<5; i++)
  23. {
  24. vx.push_back(arry1[i]);
  25. vy.push_back(arry2[i]);
  26. }
  27. EMatrix(vx,vy,5,3,coefficient);
  28. printf("拟合方程为:y = %lf + %lfx + %lfx^2 \n",coefficient[1],coefficient[2],coefficient[3]);
  29. return 0;
  30. }
  31. //累加
  32. double sum(vector<double> Vnum, int n)
  33. {
  34. double dsum=0;
  35. for (int i=0; i<n; i++)
  36. {
  37. dsum+=Vnum[i];
  38. }
  39. return dsum;
  40. }
  41. //乘积和
  42. double MutilSum(vector<double> Vx, vector<double> Vy, int n)
  43. {
  44. double dMultiSum=0;
  45. for (int i=0; i<n; i++)
  46. {
  47. dMultiSum+=Vx[i]*Vy[i];
  48. }
  49. return dMultiSum;
  50. }
  51. //ex次方和
  52. double RelatePow(vector<double> Vx, int n, int ex)
  53. {
  54. double ReSum=0;
  55. for (int i=0; i<n; i++)
  56. {
  57. ReSum+=pow(Vx[i],ex);
  58. }
  59. return ReSum;
  60. }
  61. //x的ex次方与y的乘积的累加
  62. double RelateMutiXY(vector<double> Vx, vector<double> Vy, int n, int ex)
  63. {
  64. double dReMultiSum=0;
  65. for (int i=0; i<n; i++)
  66. {
  67. dReMultiSum+=pow(Vx[i],ex)*Vy[i];
  68. }
  69. return dReMultiSum;
  70. }
  71. //计算方程组的增广矩阵
  72. void EMatrix(vector<double> Vx, vector<double> Vy, int n, int ex, double coefficient[])
  73. {
  74. for (int i=1; i<=ex; i++)
  75. {
  76. for (int j=1; j<=ex; j++)
  77. {
  78. Em[i][j]=RelatePow(Vx,n,i+j-2);
  79. }
  80. Em[i][ex+1]=RelateMutiXY(Vx,Vy,n,i-1);
  81. }
  82. Em[1][1]=n;
  83. CalEquation(ex,coefficient);
  84. }
  85. //求解方程
  86. void CalEquation(int exp, double coefficient[])
  87. {
  88. for(int k=1;k<exp;k++) //消元过程
  89. {
  90. for(int i=k+1;i<exp+1;i++)
  91. {
  92. double p1=0;
  93. if(Em[k][k]!=0)
  94. p1=Em[i][k]/Em[k][k];
  95. for(int j=k;j<exp+2;j++)
  96. Em[i][j]=Em[i][j]-Em[k][j]*p1;
  97. }
  98. }
  99. coefficient[exp]=Em[exp][exp+1]/Em[exp][exp];
  100. for(int l=exp-1;l>=1;l--) //回代求解
  101. coefficient[l]=(Em[l][exp+1]-F(coefficient,l+1,exp))/Em[l][l];
  102. }
  103. //供CalEquation函数调用
  104. double F(double c[],int l,int m)
  105. {
  106. double sum=0;
  107. for(int i=l;i<=m;i++)
  108. sum+=Em[l-1][i]*c[i];
  109. return sum;
  110. }

memset相关介绍:

http://baike.baidu.com/link?url=p7JreiRCj9yPs3r3WAfsXgynjvtGrWoQ_exF9tFGK6fsVP7V6tdm-_13QhCZxqPrfRi0wH0EihhRL_-qVvrewq

http://c./cpp/html/157.html

--------------------拟合圆的方程--------------------






  1. /*
  2. 最小二乘法拟合圆,拟合出的圆以圆心坐标和半径的形式表示
  3. */
  4. typedef complex<int> POINT;
  5. bool FitCircle(const std::vector<POINT> &points, double &er_x, double &er_y, double &radius)
  6. {
  7. cent_x = 0.0f;
  8. cent_y = 0.0f;
  9. radius = 0.0f;
  10. if (points.size() < 3)
  11. {
  12. return false;
  13. }
  14. double sum_x = 0.0f, sum_y = 0.0f;
  15. double sum_x2 = 0.0f, sum_y2 = 0.0f;
  16. double sum_x3 = 0.0f, sum_y3 = 0.0f;
  17. double sum_xy = 0.0f, sum_x1y2 = 0.0f, sum_x2y1 = 0.0f;
  18. int N = points.size();
  19. for (int i = 0; i < N; i++)
  20. {
  21. double x = points[i].real();
  22. double y = points[i].imag();
  23. double x2 = x * x;
  24. double y2 = y * y;
  25. sum_x += x;
  26. sum_y += y;
  27. sum_x2 += x2;
  28. sum_y2 += y2;
  29. sum_x3 += x2 * x;
  30. sum_y3 += y2 * y;
  31. sum_xy += x * y;
  32. sum_x1y2 += x * y2;
  33. sum_x2y1 += x2 * y;
  34. }
  35. double C, D, E, G, H;
  36. double a, b, c;
  37. C = N * sum_x2 - sum_x * sum_x;
  38. D = N * sum_xy - sum_x * sum_y;
  39. E = N * sum_x3 + N * sum_x1y2 - (sum_x2 + sum_y2) * sum_x;
  40. G = N * sum_y2 - sum_y * sum_y;
  41. H = N * sum_x2y1 + N * sum_y3 - (sum_x2 + sum_y2) * sum_y;
  42. a = (H * D - E * G) / (C * G - D * D);
  43. b = (H * C - E * D) / (D * D - G * C);
  44. c = -(a * sum_x + b * sum_y + sum_x2 + sum_y2) / N;
  45. cent_x = a / (-2);
  46. cent_y = b / (-2);
  47. radius = sqrt(a * a + b * b - 4 * c) / 2;
  48. return true;
  49. }

--------------------拟合椭圆方程--------------------

//LSEllipse.h

  1. /*************************************************************************
  2. 功能说明: 对平面上的一些列点给出最小二乘的椭圆拟合,利用奇异值分解法
  3. 解得最小二乘解作为椭圆参数。
  4. 调用形式: cvFitEllipse2f(arrayx,arrayy,box);
  5. 参数说明: arrayx: arrayx[n],每个值为x轴一个点
  6. arrayx: arrayy[n],每个值为y轴一个点
  7. n : 点的个数
  8. box : box[5],椭圆的五个参数,分别为center.x,center.y,2a,2b,xtheta
  9. esp: 解精度,通常取1e-6,这个是解方程用的说
  10. ***************************************************************************/
  11. #include<cstdlib>
  12. #include<float.h>
  13. #include<vector>
  14. using namespace std;
  15. class LSEllipse
  16. {
  17. public:
  18. LSEllipse(void);
  19. ~LSEllipse(void);
  20. vector<double> getEllipseparGauss(vector<CPoint> vec_point);
  21. void cvFitEllipse2f( int *arrayx, int *arrayy,int n,float *box );
  22. private:
  23. int SVD(float *a,int m,int n,float b[],float x[],float esp);
  24. int gmiv(float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka);
  25. int ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka);
  26. int muav(float a[],int m,int n,float u[],float v[],float eps,int ka);
  27. };
//LSEllipse.cpp
  1. #include "LSEllipse.h"
  2. #include <cmath>
  3. LSEllipse::LSEllipse(void)
  4. {
  5. }
  6. LSEllipse::~LSEllipse(void)
  7. {
  8. }
  9. //列主元高斯消去法
  10. //A为系数矩阵,x为解向量,若成功,返回true,否则返回false,并将x清空。
  11. bool RGauss(const vector<vector<double> > & A, vector<double> & x)
  12. {
  13. x.clear();
  14. int n = A.size();
  15. int m = A[0].size();
  16. x.resize(n);
  17. //复制系数矩阵,防止修改原矩阵
  18. vector<vector<double> > Atemp(n);
  19. for (int i = 0; i < n; i++)
  20. {
  21. vector<double> temp(m);
  22. for (int j = 0; j < m; j++)
  23. {
  24. temp[j] = A[i][j];
  25. }
  26. Atemp[i] = temp;
  27. temp.clear();
  28. }
  29. for (int k = 0; k < n; k++)
  30. {
  31. //选主元
  32. double max = -1;
  33. int l = -1;
  34. for (int i = k; i < n; i++)
  35. {
  36. if (abs(Atemp[i][k]) > max)
  37. {
  38. max = abs(Atemp[i][k]);
  39. l = i;
  40. }
  41. }
  42. if (l != k)
  43. {
  44. //交换系数矩阵的l行和k行
  45. for (int i = 0; i < m; i++)
  46. {
  47. double temp = Atemp[l][i];
  48. Atemp[l][i] = Atemp[k][i];
  49. Atemp[k][i] = temp;
  50. }
  51. }
  52. //消元
  53. for (int i = k+1; i < n; i++)
  54. {
  55. double l = Atemp[i][k]/Atemp[k][k];
  56. for (int j = k; j < m; j++)
  57. {
  58. Atemp[i][j] = Atemp[i][j] - l*Atemp[k][j];
  59. }
  60. }
  61. }
  62. //回代
  63. x[n-1] = Atemp[n-1][m-1]/Atemp[n-1][m-2];
  64. for (int k = n-2; k >= 0; k--)
  65. {
  66. double s = 0.0;
  67. for (int j = k+1; j < n; j++)
  68. {
  69. s += Atemp[k][j]*x[j];
  70. }
  71. x[k] = (Atemp[k][m-1] - s)/Atemp[k][k];
  72. }
  73. return true;
  74. }
  75. vector<double> LSEllipse::getEllipseparGauss(vector<CPoint> vec_point)
  76. {
  77. vector<double> vec_result;
  78. double x3y1 = 0,x1y3= 0,x2y2= 0,yyy4= 0, xxx3= 0,xxx2= 0,x2y1= 0,yyy3= 0,x1y2= 0 ,yyy2= 0,x1y1= 0,xxx1= 0,yyy1= 0;
  79. int N = vec_point.size();
  80. for (int m_i = 0;m_i < N ;++m_i )
  81. {
  82. double xi = vec_point[m_i].x ;
  83. double yi = vec_point[m_i].y;
  84. x3y1 += xi*xi*xi*yi ;
  85. x1y3 += xi*yi*yi*yi;
  86. x2y2 += xi*xi*yi*yi; ;
  87. yyy4 +=yi*yi*yi*yi;
  88. xxx3 += xi*xi*xi ;
  89. xxx2 += xi*xi ;
  90. x2y1 += xi*xi*yi;
  91. x1y2 += xi*yi*yi;
  92. yyy2 += yi*yi;
  93. x1y1 += xi*yi;
  94. xxx1 += xi;
  95. yyy1 += yi;
  96. yyy3 += yi*yi*yi;
  97. }
  98. double resul[5];
  99. resul[0] = -(x3y1);
  100. resul[1] = -(x2y2);
  101. resul[2] = -(xxx3);
  102. resul[3] = -(x2y1);
  103. resul[4] = -(xxx2);
  104. long double Bb[5],Cc[5],Dd[5],Ee[5],Aa[5];
  105. Bb[0] = x1y3, Cc[0] = x2y1, Dd[0] = x1y2, Ee[0] = x1y1, Aa[0] = x2y2;
  106. Bb[1] = yyy4, Cc[1] = x1y2, Dd[1] = yyy3, Ee[1] = yyy2, Aa[1] = x1y3;
  107. Bb[2] = x1y2, Cc[2] = xxx2, Dd[2] = x1y1, Ee[2] = xxx1, Aa[2] = x2y1;
  108. Bb[3] = yyy3, Cc[3]= x1y1, Dd[3] = yyy2, Ee[3] = yyy1, Aa[3] = x1y2;
  109. Bb[4]= yyy2, Cc[4]= xxx1, Dd[4] = yyy1, Ee[4] = N, Aa[4]= x1y1;
  110. vector<vector<double>>Ma(5);
  111. vector<double>Md(5);
  112. for(int i=0;i<5;i++)
  113. {
  114. Ma[i].push_back(Aa[i]);
  115. Ma[i].push_back(Bb[i]);
  116. Ma[i].push_back(Cc[i]);
  117. Ma[i].push_back(Dd[i]);
  118. Ma[i].push_back(Ee[i]);
  119. Ma[i].push_back(resul[i]);
  120. }
  121. RGauss(Ma,Md);
  122. long double A=Md[0];
  123. long double B=Md[1];
  124. long double C=Md[2];
  125. long double D=Md[3];
  126. long double E=Md[4];
  127. double XC=(2*B*C-A*D)/(A*A-4*B);
  128. double YC=(2*D-A*C)/(A*A-4*B);
  129. long double fenzi=2*(A*C*D-B*C*C-D*D+4*E*B-A*A*E);
  130. long double fenmu=(A*A-4*B)*(B-sqrt(A*A+(1-B)*(1-B))+1);
  131. long double fenmu2=(A*A-4*B)*(B+sqrt(A*A+(1-B)*(1-B))+1);
  132. double XA=sqrt(fabs(fenzi/fenmu));
  133. double XB=sqrt(fabs(fenzi/fenmu2));
  134. double Xtheta=0.5*atan(A/(1-B))*180/3.1415926;
  135. if(B<1)
  136. Xtheta+=90;
  137. vec_result.push_back(XC);
  138. vec_result.push_back(YC);
  139. vec_result.push_back(XA);
  140. vec_result.push_back(XB);
  141. vec_result.push_back(Xtheta);
  142. return vec_result;
  143. }
  144. void LSEllipse::cvFitEllipse2f( int *arrayx, int *arrayy,int n,float *box )
  145. {
  146. float cx=0,cy=0;
  147. double rp[5], t;
  148. float *A1=new float[n*5];
  149. float *A2=new float[2*2];
  150. float *A3=new float[n*3];
  151. float *B1=new float[n],*B2=new float[2],*B3=new float[n];
  152. const double min_eps = 1e-6;
  153. int i;
  154. for( i = 0; i < n; i++ )
  155. {
  156. cx += arrayx[i]*1.0;
  157. cy += arrayy[i]*1.0;
  158. }
  159. cx /= n;
  160. cy /= n;
  161. for( i = 0; i < n; i++ )
  162. {
  163. int step=i*5;
  164. float px,py;
  165. px = arrayx[i]*1.0;
  166. py = arrayy[i]*1.0;
  167. px -= cx;
  168. py -= cy;
  169. B1[i] = 10000.0;
  170. A1[step] = -px * px;
  171. A1[step + 1] = -py * py;
  172. A1[step + 2] = -px * py;
  173. A1[step + 3] = px;
  174. A1[step + 4] = py;
  175. }
  176. float *x1=new float[5];
  177. //解出Ax^2+By^2+Cxy+Dx+Ey=10000的最小二乘解!
  178. SVD(A1,n,5,B1,x1,min_eps);
  179. A2[0]=2*x1[0],A2[1]=A2[2]=x1[2],A2[3]=2*x1[1];
  180. B2[0]=x1[3],B2[1]=x1[4];
  181. float *x2=new float[2];
  182. //标准化,将一次项消掉,求出center.x和center.y;
  183. SVD(A2,2,2,B2,x2,min_eps);
  184. rp[0]=x2[0],rp[1]=x2[1];
  185. for( i = 0; i < n; i++ )
  186. {
  187. float px,py;
  188. px = arrayx[i]*1.0;
  189. py = arrayy[i]*1.0;
  190. px -= cx;
  191. py -= cy;
  192. B3[i] = 1.0;
  193. int step=i*3;
  194. A3[step] = (px - rp[0]) * (px - rp[0]);
  195. A3[step+1] = (py - rp[1]) * (py - rp[1]);
  196. A3[step+2] = (px - rp[0]) * (py - rp[1]);
  197. }
  198. //求出A(x-center.x)^2+B(y-center.y)^2+C(x-center.x)(y-center.y)的最小二乘解
  199. SVD(A3,n,3,B3,x1,min_eps);
  200. rp[4] = -0.5 * atan2(x1[2], x1[1] - x1[0]);
  201. t = sin(-2.0 * rp[4]);
  202. if( fabs(t) > fabs(x1[2])*min_eps )
  203. t = x1[2]/t;
  204. else
  205. t = x1[1] - x1[0];
  206. rp[2] = fabs(x1[0] + x1[1] - t);
  207. if( rp[2] > min_eps )
  208. rp[2] = sqrt(2.0 / rp[2]);
  209. rp[3] = fabs(x1[0] + x1[1] + t);
  210. if( rp[3] > min_eps )
  211. rp[3] = sqrt(2.0 / rp[3]);
  212. box[0] = (float)rp[0] + cx;
  213. box[1]= (float)rp[1] + cy;
  214. box[2]= (float)(rp[2]*2);
  215. box[3] = (float)(rp[3]*2);
  216. if( box[2] > box[3] )
  217. {
  218. double tmp=box[2];
  219. box[2]=box[3];
  220. box[3]=tmp;
  221. }
  222. box[4] = (float)(90 + rp[4]*180/3.1415926);
  223. if( box[4] < -180 )
  224. box[4] += 360;
  225. if( box[4] > 360 )
  226. box[4] -= 360;
  227. delete []A1;
  228. delete []A2;
  229. delete []A3;
  230. delete []B1;
  231. delete []B2;
  232. delete []B3;
  233. delete []x1;
  234. delete []x2;
  235. }
  236. int LSEllipse::SVD(float *a,int m,int n,float b[],float x[],float esp)
  237. {
  238. float *aa;
  239. float *u;
  240. float *v;
  241. aa=new float[n*m];
  242. u=new float[m*m];
  243. v=new float[n*n];
  244. int ka;
  245. int flag;
  246. if(m>n)
  247. {
  248. ka=m+1;
  249. }else
  250. {
  251. ka=n+1;
  252. }
  253. flag=gmiv(a,m,n,b,x,aa,esp,u,v,ka);
  254. delete []aa;
  255. delete []u;
  256. delete []v;
  257. return(flag);
  258. }
  259. int LSEllipse::gmiv( float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka)
  260. {
  261. int i,j;
  262. i=ginv(a,m,n,aa,eps,u,v,ka);
  263. if (i<0) return(-1);
  264. for (i=0; i<=n-1; i++)
  265. { x[i]=0.0;
  266. for (j=0; j<=m-1; j++)
  267. x[i]=x[i]+aa[i*m+j]*b[j];
  268. }
  269. return(1);
  270. }
  271. int LSEllipse::ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka)
  272. {
  273. // int muav(float a[],int m,int n,float u[],float v[],float eps,int ka);
  274. int i,j,k,l,t,p,q,f;
  275. i=muav(a,m,n,u,v,eps,ka);
  276. if (i<0) return(-1);
  277. j=n;
  278. if (m<n) j=m;
  279. j=j-1;
  280. k=0;
  281. while ((k<=j)&&(a[k*n+k]!=0.0)) k=k+1;
  282. k=k-1;
  283. for (i=0; i<=n-1; i++)
  284. for (j=0; j<=m-1; j++)
  285. { t=i*m+j; aa[t]=0.0;
  286. for (l=0; l<=k; l++)
  287. { f=l*n+i; p=j*m+l; q=l*n+l;
  288. aa[t]=aa[t]+v[f]*u[p]/a[q];
  289. }
  290. }
  291. return(1);
  292. }
  293. int LSEllipse::muav(float a[],int m,int n,float u[],float v[],float eps,int ka)
  294. { int i,j,k,l,it,ll,kk,ix,iy,mm,nn,iz,m1,ks;
  295. float d,dd,t,sm,sm1,em1,sk,ek,b,c,shh,fg[2],cs[2];
  296. float *s,*e,*w;
  297. //void ppp();
  298. // void sss();
  299. void ppp(float a[],float e[],float s[],float v[],int m,int n);
  300. void sss(float fg[],float cs[]);
  301. s=(float *) malloc(ka*sizeof(float));
  302. e=(float *) malloc(ka*sizeof(float));
  303. w=(float *) malloc(ka*sizeof(float));
  304. it=60; k=n;
  305. if (m-1<n) k=m-1;
  306. l=m;
  307. if (n-2<m) l=n-2;
  308. if (l<0) l=0;
  309. ll=k;
  310. if (l>k) ll=l;
  311. if (ll>=1)
  312. { for (kk=1; kk<=ll; kk++)
  313. { if (kk<=k)
  314. { d=0.0;
  315. for (i=kk; i<=m; i++)
  316. { ix=(i-1)*n+kk-1; d=d+a[ix]*a[ix];}
  317. s[kk-1]=(float)sqrt(d);
  318. if (s[kk-1]!=0.0)
  319. { ix=(kk-1)*n+kk-1;
  320. if (a[ix]!=0.0)
  321. { s[kk-1]=(float)fabs(s[kk-1]);
  322. if (a[ix]<0.0) s[kk-1]=-s[kk-1];
  323. }
  324. for (i=kk; i<=m; i++)
  325. { iy=(i-1)*n+kk-1;
  326. a[iy]=a[iy]/s[kk-1];
  327. }
  328. a[ix]=1.0f+a[ix];
  329. }
  330. s[kk-1]=-s[kk-1];
  331. }
  332. if (n>=kk+1)
  333. { for (j=kk+1; j<=n; j++)
  334. { if ((kk<=k)&&(s[kk-1]!=0.0))
  335. { d=0.0;
  336. for (i=kk; i<=m; i++)
  337. { ix=(i-1)*n+kk-1;
  338. iy=(i-1)*n+j-1;
  339. d=d+a[ix]*a[iy];
  340. }
  341. d=-d/a[(kk-1)*n+kk-1];
  342. for (i=kk; i<=m; i++)
  343. { ix=(i-1)*n+j-1;
  344. iy=(i-1)*n+kk-1;
  345. a[ix]=a[ix]+d*a[iy];
  346. }
  347. }
  348. e[j-1]=a[(kk-1)*n+j-1];
  349. }
  350. }
  351. if (kk<=k)
  352. { for (i=kk; i<=m; i++)
  353. { ix=(i-1)*m+kk-1; iy=(i-1)*n+kk-1;
  354. u[ix]=a[iy];
  355. }
  356. }
  357. if (kk<=l)
  358. { d=0.0;
  359. for (i=kk+1; i<=n; i++)
  360. d=d+e[i-1]*e[i-1];
  361. e[kk-1]=(float)sqrt(d);
  362. if (e[kk-1]!=0.0)
  363. { if (e[kk]!=0.0)
  364. { e[kk-1]=(float)fabs(e[kk-1]);
  365. if (e[kk]<0.0) e[kk-1]=-e[kk-1];
  366. }
  367. for (i=kk+1; i<=n; i++)
  368. e[i-1]=e[i-1]/e[kk-1];
  369. e[kk]=1.0f+e[kk];
  370. }
  371. e[kk-1]=-e[kk-1];
  372. if ((kk+1<=m)&&(e[kk-1]!=0.0))
  373. { for (i=kk+1; i<=m; i++) w[i-1]=0.0;
  374. for (j=kk+1; j<=n; j++)
  375. for (i=kk+1; i<=m; i++)
  376. w[i-1]=w[i-1]+e[j-1]*a[(i-1)*n+j-1];
  377. for (j=kk+1; j<=n; j++)
  378. for (i=kk+1; i<=m; i++)
  379. { ix=(i-1)*n+j-1;
  380. a[ix]=a[ix]-w[i-1]*e[j-1]/e[kk];
  381. }
  382. }
  383. for (i=kk+1; i<=n; i++)
  384. v[(i-1)*n+kk-1]=e[i-1];
  385. }
  386. }
  387. }
  388. mm=n;
  389. if (m+1<n) mm=m+1;
  390. if (k<n) s[k]=a[k*n+k];
  391. if (m<mm) s[mm-1]=0.0;
  392. if (l+1<mm) e[l]=a[l*n+mm-1];
  393. e[mm-1]=0.0;
  394. nn=m;
  395. if (m>n) nn=n;
  396. if (nn>=k+1)
  397. { for (j=k+1; j<=nn; j++)
  398. { for (i=1; i<=m; i++)
  399. u[(i-1)*m+j-1]=0.0;
  400. u[(j-1)*m+j-1]=1.0;
  401. }
  402. }
  403. if (k>=1)
  404. { for (ll=1; ll<=k; ll++)
  405. { kk=k-ll+1; iz=(kk-1)*m+kk-1;
  406. if (s[kk-1]!=0.0)
  407. { if (nn>=kk+1)
  408. for (j=kk+1; j<=nn; j++)
  409. { d=0.0;
  410. for (i=kk; i<=m; i++)
  411. { ix=(i-1)*m+kk-1;
  412. iy=(i-1)*m+j-1;
  413. d=d+u[ix]*u[iy]/u[iz];
  414. }
  415. d=-d;
  416. for (i=kk; i<=m; i++)
  417. { ix=(i-1)*m+j-1;
  418. iy=(i-1)*m+kk-1;
  419. u[ix]=u[ix]+d*u[iy];
  420. }
  421. }
  422. for (i=kk; i<=m; i++)
  423. { ix=(i-1)*m+kk-1; u[ix]=-u[ix];}
  424. u[iz]=1.0f+u[iz];
  425. if (kk-1>=1)
  426. for (i=1; i<=kk-1; i++)
  427. u[(i-1)*m+kk-1]=0.0;
  428. }
  429. else
  430. { for (i=1; i<=m; i++)
  431. u[(i-1)*m+kk-1]=0.0;
  432. u[(kk-1)*m+kk-1]=1.0;
  433. }
  434. }
  435. }
  436. for (ll=1; ll<=n; ll++)
  437. { kk=n-ll+1; iz=kk*n+kk-1;
  438. if ((kk<=l)&&(e[kk-1]!=0.0))
  439. { for (j=kk+1; j<=n; j++)
  440. { d=0.0;
  441. for (i=kk+1; i<=n; i++)
  442. { ix=(i-1)*n+kk-1; iy=(i-1)*n+j-1;
  443. d=d+v[ix]*v[iy]/v[iz];
  444. }
  445. d=-d;
  446. for (i=kk+1; i<=n; i++)
  447. { ix=(i-1)*n+j-1; iy=(i-1)*n+kk-1;
  448. v[ix]=v[ix]+d*v[iy];
  449. }
  450. }
  451. }
  452. for (i=1; i<=n; i++)
  453. v[(i-1)*n+kk-1]=0.0;
  454. v[iz-n]=1.0;
  455. }
  456. for (i=1; i<=m; i++)
  457. for (j=1; j<=n; j++)
  458. a[(i-1)*n+j-1]=0.0;
  459. m1=mm; it=60;
  460. while (1==1)
  461. { if (mm==0)
  462. { ppp(a,e,s,v,m,n);
  463. free(s); free(e); free(w); return(1);
  464. }
  465. if (it==0)
  466. { ppp(a,e,s,v,m,n);
  467. free(s); free(e); free(w); return(-1);
  468. }
  469. kk=mm-1;
  470. while ((kk!=0)&&(fabs(e[kk-1])!=0.0))
  471. { d=(float)(fabs(s[kk-1])+fabs(s[kk]));
  472. dd=(float)fabs(e[kk-1]);
  473. if (dd>eps*d) kk=kk-1;
  474. else e[kk-1]=0.0;
  475. }
  476. if (kk==mm-1)
  477. { kk=kk+1;
  478. if (s[kk-1]<0.0)
  479. { s[kk-1]=-s[kk-1];
  480. for (i=1; i<=n; i++)
  481. { ix=(i-1)*n+kk-1; v[ix]=-v[ix];}
  482. }
  483. while ((kk!=m1)&&(s[kk-1]<s[kk]))
  484. { d=s[kk-1]; s[kk-1]=s[kk]; s[kk]=d;
  485. if (kk<n)
  486. for (i=1; i<=n; i++)
  487. { ix=(i-1)*n+kk-1; iy=(i-1)*n+kk;
  488. d=v[ix]; v[ix]=v[iy]; v[iy]=d;
  489. }
  490. if (kk<m)
  491. for (i=1; i<=m; i++)
  492. { ix=(i-1)*m+kk-1; iy=(i-1)*m+kk;
  493. d=u[ix]; u[ix]=u[iy]; u[iy]=d;
  494. }
  495. kk=kk+1;
  496. }
  497. it=60;
  498. mm=mm-1;
  499. }
  500. else
  501. { ks=mm;
  502. while ((ks>kk)&&(fabs(s[ks-1])!=0.0))
  503. { d=0.0;
  504. if (ks!=mm) d=d+(float)fabs(e[ks-1]);
  505. if (ks!=kk+1) d=d+(float)fabs(e[ks-2]);
  506. dd=(float)fabs(s[ks-1]);
  507. if (dd>eps*d) ks=ks-1;
  508. else s[ks-1]=0.0;
  509. }
  510. if (ks==kk)
  511. { kk=kk+1;
  512. d=(float)fabs(s[mm-1]);
  513. t=(float)fabs(s[mm-2]);
  514. if (t>d) d=t;
  515. t=(float)fabs(e[mm-2]);
  516. if (t>d) d=t;
  517. t=(float)fabs(s[kk-1]);
  518. if (t>d) d=t;
  519. t=(float)fabs(e[kk-1]);
  520. if (t>d) d=t;
  521. sm=s[mm-1]/d; sm1=s[mm-2]/d;
  522. em1=e[mm-2]/d;
  523. sk=s[kk-1]/d; ek=e[kk-1]/d;
  524. b=((sm1+sm)*(sm1-sm)+em1*em1)/2.0f;
  525. c=sm*em1; c=c*c; shh=0.0;
  526. if ((b!=0.0)||(c!=0.0))
  527. { shh=(float)sqrt(b*b+c);
  528. if (b<0.0) shh=-shh;
  529. shh=c/(b+shh);
  530. }
  531. fg[0]=(sk+sm)*(sk-sm)-shh;
  532. fg[1]=sk*ek;
  533. for (i=kk; i<=mm-1; i++)
  534. { sss(fg,cs);
  535. if (i!=kk) e[i-2]=fg[0];
  536. fg[0]=cs[0]*s[i-1]+cs[1]*e[i-1];
  537. e[i-1]=cs[0]*e[i-1]-cs[1]*s[i-1];
  538. fg[1]=cs[1]*s[i];
  539. s[i]=cs[0]*s[i];
  540. if ((cs[0]!=1.0)||(cs[1]!=0.0))
  541. for (j=1; j<=n; j++)
  542. { ix=(j-1)*n+i-1;
  543. iy=(j-1)*n+i;
  544. d=cs[0]*v[ix]+cs[1]*v[iy];
  545. v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
  546. v[ix]=d;
  547. }
  548. sss(fg,cs);
  549. s[i-1]=fg[0];
  550. fg[0]=cs[0]*e[i-1]+cs[1]*s[i];
  551. s[i]=-cs[1]*e[i-1]+cs[0]*s[i];
  552. fg[1]=cs[1]*e[i];
  553. e[i]=cs[0]*e[i];
  554. if (i<m)
  555. if ((cs[0]!=1.0)||(cs[1]!=0.0))
  556. for (j=1; j<=m; j++)
  557. { ix=(j-1)*m+i-1;
  558. iy=(j-1)*m+i;
  559. d=cs[0]*u[ix]+cs[1]*u[iy];
  560. u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
  561. u[ix]=d;
  562. }
  563. }
  564. e[mm-2]=fg[0];
  565. it=it-1;
  566. }
  567. else
  568. { if (ks==mm)
  569. { kk=kk+1;
  570. fg[1]=e[mm-2]; e[mm-2]=0.0;
  571. for (ll=kk; ll<=mm-1; ll++)
  572. { i=mm+kk-ll-1;
  573. fg[0]=s[i-1];
  574. sss(fg,cs);
  575. s[i-1]=fg[0];
  576. if (i!=kk)
  577. { fg[1]=-cs[1]*e[i-2];
  578. e[i-2]=cs[0]*e[i-2];
  579. }
  580. if ((cs[0]!=1.0)||(cs[1]!=0.0))
  581. for (j=1; j<=n; j++)
  582. { ix=(j-1)*n+i-1;
  583. iy=(j-1)*n+mm-1;
  584. d=cs[0]*v[ix]+cs[1]*v[iy];
  585. v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
  586. v[ix]=d;
  587. }
  588. }
  589. }
  590. else
  591. { kk=ks+1;
  592. fg[1]=e[kk-2];
  593. e[kk-2]=0.0;
  594. for (i=kk; i<=mm; i++)
  595. { fg[0]=s[i-1];
  596. sss(fg,cs);
  597. s[i-1]=fg[0];
  598. fg[1]=-cs[1]*e[i-1];
  599. e[i-1]=cs[0]*e[i-1];
  600. if ((cs[0]!=1.0)||(cs[1]!=0.0))
  601. for (j=1; j<=m; j++)
  602. { ix=(j-1)*m+i-1;
  603. iy=(j-1)*m+kk-2;
  604. d=cs[0]*u[ix]+cs[1]*u[iy];
  605. u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
  606. u[ix]=d;
  607. }
  608. }
  609. }
  610. }
  611. }
  612. }
  613. free(s);free(e);free(w);
  614. return(1);
  615. }
  616. void ppp(float a[],float e[],float s[],float v[],int m,int n)
  617. { int i,j,p,q;
  618. float d;
  619. if (m>=n) i=n;
  620. else i=m;
  621. for (j=1; j<=i-1; j++)
  622. { a[(j-1)*n+j-1]=s[j-1];
  623. a[(j-1)*n+j]=e[j-1];
  624. }
  625. a[(i-1)*n+i-1]=s[i-1];
  626. if (m<n) a[(i-1)*n+i]=e[i-1];
  627. for (i=1; i<=n-1; i++)
  628. for (j=i+1; j<=n; j++)
  629. { p=(i-1)*n+j-1; q=(j-1)*n+i-1;
  630. d=v[p]; v[p]=v[q]; v[q]=d;
  631. }
  632. return;
  633. }
  634. void sss(float fg[],float cs[])
  635. { float r,d;
  636. if ((fabs(fg[0])+fabs(fg[1]))==0.0)
  637. { cs[0]=1.0; cs[1]=0.0; d=0.0;}
  638. else
  639. { d=(float)sqrt(fg[0]*fg[0]+fg[1]*fg[1]);
  640. if (fabs(fg[0])>fabs(fg[1]))
  641. { d=(float)fabs(d);
  642. if (fg[0]<0.0) d=-d;
  643. }
  644. if (fabs(fg[1])>=fabs(fg[0]))
  645. { d=(float)fabs(d);
  646. if (fg[1]<0.0) d=-d;
  647. }
  648. cs[0]=fg[0]/d; cs[1]=fg[1]/d;
  649. }
  650. r=1.0;
  651. if (fabs(fg[0])>fabs(fg[1])) r=cs[1];
  652. else
  653. if (cs[0]!=0.0) r=1.0f/cs[0];
  654. fg[0]=d; fg[1]=r;
  655. return;
  656. }

参考:

线性,非线性多项式:

http://blog.csdn.net/qll125596718/article/details/8248249

http://blog.csdn.net/poxiaozhuimeng/article/details/41117947

http://blog.csdn.net/ouyangying123/article/details/53996403

http://blog.csdn.net/jairuschan/article/details/7517773/

http://blog.csdn.net/zang141588761/article/details/50523036

http://www.cnblogs.com/gnuhpc/archive/2012/12/09/2809997.html

http://download.csdn.net/download/biaobiao11/9755119

圆拟合:

http://blog.sina.com.cn/s/blog_b27f71160101gxun.html  

http://www.cnblogs.com/dotLive/archive/2007/04/06/524633.html

http://blog.csdn.net/andylao62/article/details/24522365

http://blog.csdn.net/liyuanbhu/article/details/50889951

http://blog.csdn.net/liyuanbhu/article/details/50890587

椭圆拟合:

http://doc./u013708970/archive/121532.html

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多