绝密★启用前
2019年普通高等学校招生全国统一考试(天津卷)
数学(文史类)
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利
第Ⅰ卷
注意事项:
1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分共40分。
参考公式:
·如果事件A,B互斥,那么.
·圆柱的体积公式,其中表示圆柱的底面面积,表示圆柱的高
·棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合,,,则
(A){2} (B){2,3} (C){-1,2,3} (D){1,2,3,4}
满足约束条件则目标函数的最大值为
(A)2 (B)3 (C)5 (D)6
,则“”是“”的
(A)充分而不必要条件
(B)必要而不充分条件
(C)充要条件
(D)既不充分也不必要条件
(4)阅读右边的程序框图,运行相应的程序,输出的值为
(A)5 (B)8 (C)24 (D)29
,,,则的大小关系为
(A) (B)
(c) (D)
的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为
(A) (B) (C)2
(7)已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若,则
(A)-2 (C) (D)2
若关于的方程恰有两个互异的实数解,则的取值范围为
(A) (C) (D)
学(文史类)
第Ⅱ卷
注意事项:
1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共12小题,共110分。
二、填空题:本大题共6小题,每小题5分,共30分。
(9)是虚数单位,则的值的值为__________.
(10)设,使不等式成立的的取值范围为__________.
(11)曲线在点处的切线方程为__________.
(12)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.
(13)设,,,的最小值为__________.
(14)在四边形中,,,,,点在线段的延长线上,且,则__________.
三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
(15)(本小题满分13分)
2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工
项目 A B C D E F 子女教育 ○ ○ × ○ × ○ 继续教育 × × ○ × ○ ○ 大病医疗 × × × ○ × × 住房贷款利息 ○ ○ × × ○ ○ 住房租金 × × ○ × × × 赡养老人 ○ ○ × × × ○ (i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.
(16)(本小题满分13分)
在中,内角所对的边分别为.已知,.
(Ⅰ)求的值;
(Ⅱ)求的值.
(17)(本小题满分13分)
如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,
(Ⅰ)设分别为的中点,求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
(18)(本小题满分13分)
设是等差数列,是等比数列,公比大于,已知,,.
(Ⅰ)求和的通项公式;
(Ⅱ)设数列满足求.
(19)(本小题满分14分)
设椭圆的左焦点为,左顶点为,(为原点).
(Ⅰ)求椭圆的离心率;
(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.
(20)(本小题满分14分
设函数,其中.
(Ⅰ)若,讨论的单调性;
(Ⅱ)若,恰有两个零点
(ii)设为的极值点,为的零点,且,证明.
绝密★启用前
2019年普通高等学校招生全国统一考试(天津卷)
数学(文史类)参考解答
一.选择题:本题考查基本知识和基本运算.每小题5分,满分40分
(1)D (2)C (3)B (4)B
(5)A (6)D (7)C (8)D
(10) (11)
(12) (13) (14)
,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员中分别抽取6人,9人,10人.
(Ⅱ)(i)从已知的6人中随机抽取2人的所有可能结果为
,i)由表格知,符合题意的所有可能结果为
,共11种.
所以,事件发生的概率
(16)本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力.满分13分.
(1)解:在中,由正弦定理,得,又由,得,.又因为,得到,.由余弦定理可得
.
(Ⅱ)解:由(1)可得
,从而,,.
(17)本小题主要考查直线与平面平行直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力满分13分.
(Ⅰ)证明:连接,易知,.又由,故,又因为平面,平面,所以平面.
(Ⅱ)证明:取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,交平面,故.又已知,,所以平面.
(Ⅲ)解:连接,由(Ⅱ)中平面,可知为直线与平面所成的角,
因为为等边三角形,且为的中点,所以.又,
在中,.
所以,直线与平面所成角的正弦值为.
(18)本小题主要考查等差数列、等比数列的通项公式及其前项和公式等基础知识,考查数列求和的基本方法和运算求解能力.满分13分.
(Ⅰ)解:设等差数列的公差为,等比数列的公比为依题意,得,,故,.
所以,的通项公式为,的通项公式为.
(Ⅱ)解:
.①
,
②-①得,.
所以,
.
(19)本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力,满分14分.
(Ⅰ)解:设椭圆的半焦距为,由已知有,又由,消去得,.
所以,椭圆的离心率为.
(Ⅱ)解:由(Ⅰ)知,,,故椭圆方程为.由题意,,则直线的方程为.点P的坐标满足,并化简,得到,解得,,代入到的方程,解得,.因为点在轴上方,所以.由圆心在直线上,可设.因为,且由(Ⅰ)知,,解得.因为圆与轴相切,所以圆的半径为2,又由圆与相切,得,可得.
所以,椭圆的方程为.
(20)本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法,考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.满分14分.
(Ⅰ)解:由已知,的定义域为,且
因此当时,,从而,所以在内单调递增.
(Ⅱ)证明:(i)由(Ⅰ)知.令,由,
可知在内单调递减,又,且
.
故在内有唯一解,从而在内有唯一解,不妨设为,则.当时,,所以在内单调递增;当时,,所以在内单调递减,因此是的唯一极值点.
令,则当时,,在内单调递减,从而当时,,所以.从而
,
,所以在内有唯零点.又在内有唯一零点1,从而,)在内恰有两个零点.
(ii)由题意,即,,即.因为当时,,又,故,两边取对数,得,于是
,
.
|
|