【考试要求】 1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值。 2.理解函数的单调性、最大值、最小值的作用和实际意义. 【规律方法】1.(1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).(2)单调区间不能用集合或不等式表达,且图象不连续的单调区间要用“和”“,”连接. 2.(1)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法. (2)函数y=f[g(x)]的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则. 【规律方法】 求函数最值的四种常用方法 (1)单调性法:先确定函数的单调性,再由单调性求最值. (2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值. (3)基本不等式法:先对【解析】式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值. (4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 【规律方法】 1.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值. 2.(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f”. 【反思与感悟】 1.利用定义证明或判断函数单调性的步骤: (1)取值;(2)作差;(3)定号;(4)判断. 2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性. 3.求函数最值的常用求法:单调性法、图象法、换元法、利用基本不等式. 【易错防范】 1.区分两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集. |
|