分享

北邮在线:通往强人工智能,少不了的模拟大脑

 fatstudent 2019-09-02

人工智能这个词,从诞生到一路坎坷地迎来辉煌,就注定与“模拟”紧密相连。

1956年,在新罕布什尔州达特茅斯学院的一次小型会议上,赫伯特西蒙、约翰麦卡锡、克劳德香农等AI界的开山鼻祖们,就提出了“智能的任何特征,原则上都可以精确描述,因此我们可以制造机器来对它进行模拟”。

先解释一下,虽然都是对大脑智能的“模拟”,但不同人工智能学派的理念却各不一样。

符号主义学派主张模拟人脑的逻辑思维。先把问题或知识表示为某种逻辑结构,运用符号演算,从而实现表示、推理和学习等功能,典型代表就是专家系统。

联结主义学派则主张模拟人脑的生理结构和工作机理。通过人脑神经网络、神经元之间的连接以及在神经元间的并行处理,实现对人脑智能的模拟。现在街知巷闻的神经网络算法,就是这一理念的成功应用。

而行为主义学派则主张直接模拟智能行为的感知和动作模式。不要考虑复杂的知识、表征、推理等等,让AI在现实世界中通过自动控制过程与环境交互作用表现出来就好。

在感知层面,利用现代计算机算力的提升,以及网络数据量的暴涨,让深度学习通过大规模数据集与训练来获得数据模型成为了可能。

而在让机器“看起来智能”的核心推理能力上,深度学习也展现了足够强大的进步。主要体现在两个方面:一种是判别事物。在已知属性的条件下,让机器对某个事物进行判断与分类,比如找出垃圾邮件或攻击性语言,亦或是从图像、视频中识别出某种特殊物体等等。

另一个能力则是生成。也就是通过训练好的模型,产生处符合该模型描述的数据。比如风靡一时的AI换脸,越来越机灵的智能语音助手,自动编写新闻的机器人等等。

得益于这种在应用场景上快速打开商业想象力的优势,我们今天提到AI,绝大多数人的第一反应,已经不再是被替代的恐慌、超越人类的恐怖故事,而是如何让数字世界为AI所用,再让以深度学习及衍生技术为基石的AI反哺千行万业,为社会生活提质增效。

一个是如前面科学家们所说,为人工智能算法找到新的突破口,脱离“模拟程序智能”的桎梏;

而另一个机器人的智能也可以得到显著提高。“多任务训练”一直是当下人工智能的突破难点,随着模拟人脑的深入,既不用让人类辛辛苦苦地对其进行“殴打”,来训练其灵活处理信息的能力,避免了不少伦理难题;还有可能将人类智能导入机器,培养出能够执行复杂任务的“多功能”机器人。

或许也只有这样,AI才能拥有一个真正智慧的“大脑”。不同道路在未来的交汇,将为AI的极限发挥埋下一个漂亮的引线。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多