本篇将要介绍的是,从2006年至今的神经网络第三次浪潮中,取得巨大成功、处于最核心位置的技术——卷积神经网络,Convolutional Neural Network(CNN)。 视觉皮层,来源:https://lilianweng./lil-log/2017/06/21/an-overview-of-deep-learning.html 一战成名 2012年AlexNet在ImageNet上一战成名,点爆了深度学习革命,这是历史性的时刻。其中的故事,推荐朱珑(Leo Zhu)的《深度学习三十年创新路》,讲的很精彩,下面的引用部分就是片段节选。
ImageNet 如上图所示,2012年AlexNet的惊艳之处在于,它比上一年冠军的错误率25.8%低了近10个百分点。正是这前所未有的进步,引领人们穿透迷雾,望见了未来。
黑马AlexNet并不“新”,如上面节选所说,它其实脱胎于1998年即14年前就被Lecun提出的卷积神经网络LeNet-5,改动非常有限:
前两点与网络架构相关,虽然ReLU的应用贡献良多,但就整个算法框架来说它们都算不上有实质性的改变。而后两点或许才是更根本的,得益于大数据和摩尔定律,AlexNet获得了可以用更多数据来训练网络所需要的算力。 而LeNet-5在当时的数据与算力条件下,显然不如其他的机器学习算法(核方法、图模型、SVM等)更有前景,冰封十余载才获得了认可。 神经科学的启示 就像20世纪40、50年代,受神经科学发现的启示,人类构建了人工神经元一样,1959年Hubel和Wiesel对哺乳动物视觉皮层机理的发现,让人类再次受到造物主的馈赠,卷积神经网络就是最成功的应用之一。 哈佛大学的神经生理学博士Hubel和Wiesel观察了猫大脑中的单个神经元如何响屏幕上的图像,他们发现处于视觉系统较前面的区域神经元对特定的光模式反应强烈,而对其他模式完全没有反应,这个部分被称为初级视觉皮层,Primary Visual Cortex,也被称为V1。他们凭借这个开创性的研究,在1981年获得了诺贝尔生理学或医学奖。 V1的发现开启了对人脑视觉系统进一步的认知,如本篇最前面引用的那幅图中所绘制的,当眼睛查看外界对象时,信息从视网膜流到V1,然后到V2(Secondary Visual Cortex),V4,之后是IT(Inferior Temporal Gyrus,颞下回)。哺乳动物的视觉系统是分层递进的,每一级都比前一级处理更高层次的概念:
卷积神经网络就是根据V1的3个性质设计的:
V1其后的视觉区域,其实与V1具有相同的原理,特征检测与池化策略反复执行。同样,卷积网络架构的设计,也是卷积层和池化层重复叠加,形成深度层级。具有开创性的现代卷积网络LeNet-5,架构如下图所示: LeNet-5 迂回前进的历史 卷积神经网络并不是一夜之间发明出来的,从2012年AlexNet开始追溯的话,还需要更多历史性时刻的支撑,即使是最早的卷积神经网络出现,也在Hubel和Wiesel实验的二十年后了。尽管神经科学给出了启示,却并没有告诉我们该如何训练卷积网络:
历史就是这样迂回前进的,一开始是各个独立、随机的小支流,随着时间的推进,最终汇聚在一起产生革命性的时刻。 共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN |
|
来自: taotao_2016 > 《AI》