段镶锋
美国加利福尼亚大学洛杉矶分校终身教授
段镶锋于1997年在中国科技大学取得学士学位,并分别于1999年和2002年在美国哈佛大学取得硕士与博士学位。基于其博士论文成果,他于2002-2008年参与创建Nanosys 公司。2008年加入美国加州大学洛杉矶分校,现为该校终身教授。他的研究兴趣包括纳米材料的制备,组装及其在未来电子与能源器件中的应用。他近年来在二维材料及其异质结的可控合成,范德华集成,以及相关新型器件等方面取得了一系列开创性成果;同时在三维多孔石墨烯复合储能材料及纳米催化与电化学能源转化等方面也取得了突破性进展。段镶锋教授曾多次获得国际大奖,包括美国青年科学家总统奖;国际材料学会联合会-新加坡材料学会青年研究员奖,英国皇家化学会贝尔比奖章, 国际电化学会田昭武能源材料奖,和中国科学材料创新奖等。
Abstract:
The heterogeneous integration of dissimilar materials is a long pursuit of material science community and has defined the material foundation for modern electronics and optoelectronics. The typical material integration approaches usually involve strong chemical bonds and aggressive synthetic conditions and are typically limited to materials with strict structure match and processing compatibility. Alternatively, van der Waals integration, in which freestanding building blocks are physically assembled together through weak van der Waals interactions, offers a bond-free material integration strategy without lattice and processing limitations, as exemplified by the recent blossom of 2D van der Waals heterostructures. Here I will discuss the fundamental forces involved in van der Waals integration and generalize this approach for flexible integration of radically different materials to produce artificial heterostructures with minimum interfacial disorder and enable high-performing devices. Recent highlights include the formation of van der Waals metal/semiconductor junctions free of Fermi level pinning to reach the Schottky-Mott limit; the creation of a new class of high-order van der Waals superlattices with highly distinct constituent atomic or molecular layers; and the development of van der Waals thin film electronics with unprecedented flexibility and stretchability. I will conclude with a brief prospect on exploring such artificial heterostructures as a versatile material platform with electronic structure by design to unlock new physical limits and enable device concepts beyond the reach of the existing materials.