参考文献
[1]ESLAM M, GEORGE J. Genetic and epigenetic mechanisms of NASH[J]. Hepatol Int, 2016, 10(3): 394-406.
[2]YANG YL, ZHENG LY, GU WM, et al. Effect of total glucosides of paeony regulate HMGB1,RAGE pathway on nonalcoholic fatty liver disease in rats[J]. Chin J Clin Pharmacol Ther, 2017, 22(6): 611-616. (in Chinese)
杨以琳, 郑琳颖, 古伟明, 等. 白芍总苷对非酒精性脂肪性肝病大鼠HMGB1、RAGE通路的调控作用[J]. 中国临床药理学与治疗学, 2017, 22(6): 611-616.
[3]YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84.
[4]MENG YL, ZHANG HY, SONG BG, et al. An investigation of the prevalence rate of fatty liver disease among people undergoing physical examination in Tangshan, China[J]. J Clin Hepatol, 2017, 33(12): 2376-2380.(in Chinese)
孟昱林, 张海艳, 宋宝国, 等. 唐山市体检人群脂肪肝患病率调查分析[J]. 临床肝胆病杂志, 2017, 33(12): 2376-2380.
[5]DIBNER C, SCHIBLER U, ALBRECHT U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol, 2010, 72: 517-549.
[6]MOHAWK JA, GREEN CB, TAKAHASHI JS. Central and peripheral circadian clocks in mammals[J]. Annu Rev Neurosci, 2012, 35: 445-462.
[7]GLASER FT, STANEWSKY R. Synchronization of the drosophila circadian clock by temperature cycles[J]. Cold Spring Harb Symp Quant Biol, 2007, 72: 233-242.
[8]DAMIOLA F, LE MINH N, PREITNER N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus[J]. Genes Dev, 2000, 14(23): 2950-2961.
[9]KING DP, ZHAO Y, SANGORAM AM, et al. Positional cloning of the mouse circadian clock gene[J]. Cell, 1997, 89(4): 641-653.
[10]LANDOLT HP. CIRCADIAN RHYTHMS. Caffeine, the circadian clock, and sleep[J]. Science, 2015, 349(6254): 1289.
[11]CHO H, ZHAO X, HATORI M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta[J]. Nature, 2012, 485(7396): 123-127.
[12]BERSTEN DC, SULLIVAN AE, PEET DJ, et al. bHLH-PAS proteins in cancer[J]. Nat Rev Cancer, 2013, 13(12): 827-841.
[13]MAZZOCCOLI G, PAZIENZA V, VINCIGUERRA M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms[J]. Chronobiol Int, 2012, 29(3): 227-251.
[14]WILLEBRORDS J, PEREIRA IV, MAES M, et al. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research[J]. Prog Lipid Res, 2015, 59: 106-125.
[15]FANG YL, CHEN H, WANG CL, et al. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”[J]. World J Gastroenterol, 2018, 24(27): 2974-2983.
[16]ONYEKWERE CA, OGBERA AO, SAMAILA AA, et al. Nonalcoholic fatty liver disease: Synopsis of current developments[J]. Niger J Clin Pract, 2015, 18(6): 703-712.
[17]WEI GC, HE JY. Traditional Chinese medicine intervention to nonalcoholic fatty liver disease based on physique identi cation[J]. J Changchun Univ Chin Med, 2018, 34(3): 518-521. (in Chinese)
魏功昌, 何瑾瑜. 中医体质辨识治疗非酒精性脂肪性肝病[J]. 长春中医药大学学报, 2018, 34(3): 518-521.
[18]REBRIN K, STEIL GM, MITTELMAN SD, et al. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs[J]. J Clin Invest, 1996, 98(3): 741-749.
[19]SHULMAN GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease[J]. N Engl J Med, 2014, 371(23): 2237-2238.
[20]SACHDEV MS, RIELY CA, MADAN AK. Nonalcoholic fatty liver disease of obesity[J]. Obes Surg, 2006, 16(11): 1412-1419.
[21]CARDOSO AR, CABRAL-COSTA JV, KOWALTOWSKI AJ. Effects of a high fat diet on liver mitochondria: Increased ATP-sensitive K+ channel activity and reactive oxygen species generation[J]. J Bioenerg Biomembr, 2010, 42(3): 245-253.
[22]FELDSTEIN AE, WERNEBURG NW, CANBAY A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway[J]. Hepatology, 2004, 40(1): 185-194.
[23]TOMITA K, TAMIYA G, ANDO S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice[J]. Gut, 2006, 55(3): 415-424.
[24]PAZ-FILHO G, MASTRONARDI C, FRANCO CB, et al. Leptin: Molecular mechanisms, systemic pro-inflammatory effects, and clinical implications[J]. Arq Bras Endocrinol Metabol, 2012, 56(9): 597-607.
[25]KAPIL S, DUSEJA A, SHARMA BK, et al. Small intestinal bacterial overgrowth andtoll-like receptor signaling in patients with non-alcoholic fatty liver disease[J]. J Gastroenterol Hepatol, 2016, 31(1): 213-221.
[26]LANASPA MA, SANCHEZ-LOZADA LG, CHOI YJ, et al. Uric acid induces heaptic steatosis by generation of mitochondrial oxidative stress: Potential role in fructose-dependent and -independent fatty liver[J]. J Biol Chem, 2012, 287(48): 40732-40744.
[27]GIUDICE EM, GRANDONE A, CIRILLO G, et al. The association of PNPLA3 variants with liver enzymes in childhood obesity is driven by the interaction with abdominal fat[J]. PLoS One, 2011, 6(11): e27933.
[28]ZANI F, BREASSON L, BECATTINI B, et al. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression[J]. Mol Metab, 2013, 2(3): 292-305.
[29]GRIMALDI B, BELLET MM, KATADA S, et al. PER2 controls lipid metabolism by direct regulation of PPARgamma[J]. Cell Metab, 2010, 12(5): 509-520.
[30]ZHOU D, WANG Y, CHEN L, et al. Evolving roles of circadian rhythms in liver homeostasis and pathology[J]. Oncotarget, 2016, 7(8): 8625-8639.
[31]MARION-LETELLIER R, SAVOYE G, GHOSH S. Fatty acids, eicosanoids and PPAR gamma [J]. Eur J Pharmacol, 2016, 785: 44-49.
[32]YANG G, JIA Z, AOYAGI T, et al. Systemic PPARgamma deletion impairs circadian rhythms of behavior and metabolism[J]. PLoS One, 2012, 7(8): e38117.
[33]LI S, LIN JD. Molecular control of circadian metabolic rhythms[J]. J Appl Physiol (1985), 2009, 107(6): 1959-1964.
[34]FU J, GAETANI S, OVEISI F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha[J]. Nature, 2003, 425(6953): 90-93.
[35]CHO H, ZHAO X, HATORI M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta[J]. Nature, 2012, 485(7396): 123-127.
[36]TAHARA Y, SHIBATA S. Circadian rhythms of liver physiology and disease: Experimental and clinical evidence[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(4): 217-226.
[37]LAMIA KA, PAPP SJ, YU RT, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor[J]. Nature, 2011, 480(7378): 552-556.
[38]SUN S, ZHOU L, YU Y, et al. Knocking down clock control gene CRY1 decreases adipogenesis via canonical Wnt/beta-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2018, 506(3): 746-753.
[39]ZHANG EE, LIU Y, DENTIN R, et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis[J]. Nat Med, 2010, 16(10): 1152-1156.
[40]MARCHEVA B, RAMSEY KM, BUHR ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature, 2010, 466(7306): 627-631.
[41]LAMIA KA, STORCH KF, WEITZ CJ. Physiological significance of a peripheral tissue circadian clock[J]. Proc Natl Acad Sci U S A, 2008, 105(39): 15172-15177.
[42]JACOBI D, LIU S, BURKEWITZ K, et al. Hepatic bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness[J]. Cell Metab, 2015, 22(4): 709-720.
[43]DUMBELL R, MATVEEVA O, OSTER H. Circadian clocks, stress, and immunity[J]. Front Endocrinol (Lausanne), 2016, 7: 37.
[44]ASTIZ M, OSTER H. Perinatal programming of circadian clock-stress crosstalk[J]. Neural Plast, 2018, 2018: 5689165.
[45]YANG S, LIU A, WEIDENHAMMER A, et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms[J]. Endocrinology, 2009, 150(5): 2153-2160.
[46]RUTTER J, REICK M, WU LC, et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors[J]. Science, 2001, 293(5529): 510-514.
[47]ASHER G, SCHIBLER U. Crosstalk between components of circadian and metabolic cycles in mammals[J]. Cell Metab, 2011, 13(2): 125-137.
[48]KIL IS, LEE SK, RYU KW, et al. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria[J]. Mol Cell, 2012, 46(5): 584-594.
[49]NEUFELD-COHEN A, ROBLES MS, AVIRAM R, et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins[J]. Proc Natl Acad Sci U S A, 2016, 113(12): e1673-e1682.
终于被你滚到底了