分享

生物钟基因与非酒精性脂肪性肝病

 临床肝胆病杂志 2019-12-13

非酒精性脂肪性肝病 (NAFLD) 指除外酒精和其他明确损肝因素所致的, 以肝细胞脂肪变性和脂质沉积为特征的临床病理综合征。其组织学亚型——非酒精性脂肪性肝炎作为重要的肝纤维化前期病变,如未行积极诊治,可逐渐进展为肝硬化,甚至肝癌等终末期肝病。NAFLD已经成为最普遍的慢性肝病之一。流行病学研究发现全球NAFLD患病率为2524%,亚洲人NAFLD患病率为27.37%,且亚洲NAFLD患者肥胖症的患病率为67%。目前我国NAFLD患病率呈明显上升趋势,因此明确其发病机制并积极进行防治十分重要。

1  生物钟概述

1.1  生物钟的形成

生物钟是生物体为适应外在环境而在长期的进化过程中形成的内在节律。地球自转使得昼夜交替,生物体为了适应光照、温度等变化而出现一系列的生理和行为变化。哺乳动物体内的生物钟分别由中枢生物钟(下丘脑视交叉上核,SCN)和外周生物钟(肝、肠、肾、心和脾)组成,SCN起着主要的调控作用,也称为核心钟,它们共同调控生物体的各种生理和行为活动。SCN通过直接接收来自视网膜的光输入来感知一天中的时间,使得中枢生物钟相位与光相位同步,昼夜节律周期达到24 h。通过神经和体液信号,SCN将此信息发送到大脑其他区域和外周生物钟,这些生物钟几乎存在于身体其他部分的所有细胞中,并将它们同步到同一阶段。中枢生物钟节律仅对光照/黑暗变化发生反应,而外周生物钟节律不但可受中枢生物钟的调控,其自身还能根据某些外部环境影响(如温度、饮食控制和进食时间)达到自我调控,从而达到机体自我保护的稳态平衡。

1.2  生物钟的分子调控机制

生物钟在分子水平上由多个生物钟基因精确调控,如circadian locomotor output cycles kaput(CLOCK)、brain and muscle arylhydrocarbo receptor nuclear translocator(ARNT)-like protein-1(BMAL1)、period(Per, Per1、Per2、Per3)、cryptochrome(Cry, Cry1、Cry2)、neuronal Per-Arnt-Sim domain protein 2(NPAS2)、nuclear receptor subfamily 1 group D member 1(NR1D1,也称Rev-Erbα)、peroxisome proliferator-activated receptor alpha(PPARα)等。

生物钟基因CLOCK通过bHLH-PAS结构域与BMAL1形成异源二聚体,同Per和Cry基因启动子上的E盒相结合并激活其转录,表达产物Per和Cry系列蛋白由细胞胞浆转移至胞核内,作为负性元件与CLOCK/BMAL1直接结合并抑制其活性,进而阻遏Per和Cry的进一步转录;CLOCK与BMAL1形成的异二聚体除了激活Per和Cry基因转录外,也激活了孤儿核受体Rev-Erb基因的转录。Rev-Erb基因编码蛋白可与BMAL1启动子相结合并阻遏其转录。生物钟基因这种负反馈循环结构形成人体内精确的内源性“分子钟”,并通过其下游的钟控基因将生物钟的节律信号输出,从而使细胞内的分子活动也呈现出时间节律。

2  NAFLD发病机制

目前NAFLD的发病机制尚未明确,但已经完成从 “二次打击学说”到“多重打击模型”的演变。“多重打击模型”认为第一次打击仍是由胰岛素抵抗(IR)引发肝脏脂质沉积,但第二次打击仅由氧化应激及脂质过氧化损伤概括似乎难以解释NAFLD的复杂性。脂代谢紊乱引起肝脏脂质沉积是NAFLD 的重要病因,IR使胰岛素抑制脂肪分解作用减弱,引起血浆游离脂肪酸(FFA)浓度升高,被肝细胞摄取后甘油三酯合成增多,促使脂质沉积。肝脏积累的脂质分子又通过干扰细胞胰岛素受体底物的酪氨酸磷酸化和信号转导加重IR。IR与脂代谢紊乱相互影响,共同推动NAFLD病程进展。在IR与FFA增多的基础上,微粒体内的脂质过氧化物酶上调,线粒体内的β氧化作用增强,导致肝脏对氧化应激更加敏感,从而增加了肝脏受损的程度。线粒体活性氧反应产物的改变会促进体内氧化还原反应的一系列变化,而这些变化会改变氨基末端激酶的活性,并且扰乱胰岛素信号。

此外,FFA水平上升可导致脂毒性和IR,并与其他因素(如肠源性内毒素)一起促进炎症因子IL-6、TNFα、IL-4等的释放,肝脏长期暴露于高水平炎症因子可导致与非酒精性脂肪性肝炎相似的组织学变化,并且IL-6、TNFα等能够使脂联素水平降低和瘦素水平升高,脂联素具有抗炎、抗动脉粥样硬化及抗糖尿病的特性,瘦素水平增高可导致慢性炎症在肥胖患者中的循环永久化。菌群失调或肠道屏障破坏会增加细菌流入肝脏,从而通过激活Toll样受体和其他模式识别受体来促进炎症反应。此外,NAFLD发病还与饮食因素及遗传因素相关。这些因素相互影响、共同作用,导致NAFLD的发生。

3  生物钟基因表达对脂代谢的影响

研究发现Per2基因敲除小鼠空腹血糖降低,肝糖原积累减少,血浆胰岛素水平升高,糖异生受损,并且血脂水平降低,在高脂饮食下体质量增加较野生型更为明显。这说明生物钟基因Per2不仅在调节基因表达中起作用,对新陈代谢也有重要影响。此外,Per2可以特异性地抑制PPARγ,PPARγ是氧化应激、炎症反应、葡萄糖及脂质代谢的关键核受体,缺乏PER2基因会影响脂质代谢,其特征在于血浆甘油三酯和FFA的快速减少。生物钟基因Per2在脂肪肝肝组织中的表达明显低于正常肝组织,NAFLD患者肝细胞PPARγ和aP2高表达,肝组织中增多的FFA和类花生酸与PPARγ相互作用,可激活生物钟基因上游的调节元件从而调节BMAL1的活性。PPARα激活肝脏中的BMAL1和Rev-Erbα, PPAR的配体包括各种类型的脂质,其中在小肠中产生和释放的肠道循环代谢产物油酰乙醇胺,在PPARα依赖下,休息期间可抑制食物摄入。Rev-Erbα是一种调节脂质代谢和脂肪生成的核受体,受生物钟调节并抑制BMAL1表达。Rev-Erbα和Rev-Erbβ双敲的小鼠会出现血糖和甘油三酯水平升高,但是FFA水平降低,FFA降低可反映氧化代谢的增加。Rev-Erbs基因可通过调控INSIG2-SREBP信号通路参与脂质代谢。

多项研究发现Cry1或Cry2基因敲除小鼠葡萄糖不耐受,皮质酮水平升高,肝脏中糖皮质激素(GC)反式激活增加,脂肪生成和类固醇生成途径改变,以及身体生长和肝脏再生受损。Cry1可通过阻断胰高血糖素的腺苷酸环化酶信号传导来抑制肝脏糖异生,Cry1和Cry2双敲除动物的糖异生增加。

CLOCK或BMAL1敲除小鼠会出现葡萄糖耐量降低,胰岛素分泌减少,胰岛增殖缺陷,且症状随着年龄的增长而加重。肝脏特异性敲除BMAL1可导致肝脏的关键代谢基因振荡丧失,引起糖异生受损、葡萄糖过度清除和静息期间的低血糖,并加重肝细胞氧化损伤、诱发IR;胰腺特异性BMAL1敲除则导致高血糖、葡萄糖耐量降低及由于β细胞增殖和胰岛素颗粒胞吐作用导致的胰岛素减少,因此,组织特异性生物钟在胰岛和肝脏中具有不同的作用,影响相反的代谢过程,从而在喂食和禁食期间促进葡萄糖稳定性。恢复高脂饮食小鼠的BMAL1活性能逆转线粒体的肿胀形态并改善线粒体功能。由上述研究可知生物钟基因与脂质代谢密切相关。 

4  生物钟基因调控影响GC水平 

作为全身昼夜节律的夹带信号,GC节律在协调糖、脂质和蛋白质代谢中起关键作用。在无压力条件下,循环中的GC水平显示出在活跃期开始时的强烈日常节律性峰值(即人类的早晨和夜间啮齿动物的夜晚)。GC昼夜节律由中枢和外周生物钟协调。SCN控制下丘脑-垂体-肾上腺轴的昼夜节律功能,以诱导GC的节律性产生和分泌。肝脏、脂肪组织和肾脏中的外周时钟由SCN通过自主神经系统和有节奏的夹带信号(例如GC)调节。

研究发现GC和进食模式的昼夜节律在Per2基因敲除小鼠中变得紊乱。Cry1和Cry2可以以配体依赖性方式与糖皮质激素受体(GR)的C末端结构域相互作用,抑制GR介导的某些靶基因的反式激活。Cry1和Cry2的缺失导致GR介导的GC合成受损。缺乏Cry1或Cry2的小鼠在注射葡萄糖后恢复正常血糖的能力也显著受损。CLOCK/BMAL1异二聚体与GR相互作用,从而降低其对GC反应元件的亲和力及其向细胞核的易位。此外,Rev-Erbα可以通过与热休克蛋白90的相互作用来稳定GR的核定位,从而增强其转录活性。通过这种复杂的相互作用网络,GR最终在生理反应中转化环境信息。

5  生物钟基因与氧化应激变化

环磷酸腺苷不仅仅是SCN的输出,还是SCN起搏器的一个组成部分,调节转录周期。细胞能量状态也影响氧化还原状态,食物摄入通过该途径可能影响昼夜节律。实际上,体外实验已经表明,烟酰胺腺嘌呤二核苦酸的氧化还原状态可以调节CLOCK/BMAL1异二聚体的DNA结合活性,这表明细胞氧化还原变化可能足以改变生物钟。体内NAD水平受到昼夜节律的影响,从而为生物钟提供有节奏的输入,但也有一些间接途径,氧化还原状态可通过这些途径与时钟相关联。最近的研究进一步确定了细胞氧化还原状态的24 h节律,其控制过氧化物酶抗氧化酶家族氧化态的昼夜节律振荡。有研究发现参与脂质和葡萄糖代谢的线粒体限速酶依赖Per1和Per2蛋白的调控,Per1/2缺乏或高脂饮食的小鼠会出现线粒体呼吸调节迟钝。这些研究提出了细胞氧化还原状态的振荡可能控制代谢过程的昼夜节律并且可能独立于生物钟转录反馈环。

6  展望

综上,目前许多研究已证实生物钟基因紊乱可导致与NAFLD发病密切相关的脂代谢异常、氧化应激、IR、GC分泌异常等,但生物钟基因紊乱是否能成为NAFLD发生发展过程中的又一打击因素,其机制仍有待继续探索。

参考文献

[1]ESLAM M, GEORGE J. Genetic and epigenetic mechanisms of NASH[J]. Hepatol Int, 2016, 10(3): 394-406.

[2]YANG YL, ZHENG LY, GU WM, et al. Effect of total glucosides of paeony regulate HMGB1,RAGE pathway on nonalcoholic fatty liver disease in rats[J]. Chin J Clin Pharmacol Ther, 2017, 22(6): 611-616. (in Chinese)

杨以琳, 郑琳颖, 古伟明, 等. 白芍总苷对非酒精性脂肪性肝病大鼠HMGB1、RAGE通路的调控作用[J]. 中国临床药理学与治疗学, 2017, 22(6): 611-616.

[3]YOUNOSSI ZM, KOENIG AB, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology, 2016, 64(1): 73-84.

[4]MENG YL, ZHANG HY, SONG BG, et al. An investigation of the prevalence rate of fatty liver disease among people undergoing physical examination in Tangshan, China[J]. J Clin Hepatol, 2017, 33(12): 2376-2380.(in Chinese)

孟昱林, 张海艳, 宋宝国, 等. 唐山市体检人群脂肪肝患病率调查分析[J]. 临床肝胆病杂志, 2017, 33(12): 2376-2380.

[5]DIBNER C, SCHIBLER U, ALBRECHT U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol, 2010, 72: 517-549.

[6]MOHAWK JA, GREEN CB, TAKAHASHI JS. Central and peripheral circadian clocks in mammals[J]. Annu Rev Neurosci, 2012, 35: 445-462.

[7]GLASER FT, STANEWSKY R. Synchronization of the drosophila circadian clock by temperature cycles[J]. Cold Spring Harb Symp Quant Biol, 2007, 72: 233-242.

[8]DAMIOLA F, LE MINH N, PREITNER N, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus[J]. Genes Dev, 2000, 14(23): 2950-2961.

[9]KING DP, ZHAO Y, SANGORAM AM, et al. Positional cloning of the mouse circadian clock gene[J]. Cell, 1997, 89(4): 641-653.

[10]LANDOLT HP. CIRCADIAN RHYTHMS. Caffeine, the circadian clock, and sleep[J]. Science, 2015, 349(6254): 1289.

[11]CHO H, ZHAO X, HATORI M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta[J]. Nature, 2012, 485(7396): 123-127.

[12]BERSTEN DC, SULLIVAN AE, PEET DJ, et al. bHLH-PAS proteins in cancer[J]. Nat Rev Cancer, 2013, 13(12): 827-841.

[13]MAZZOCCOLI G, PAZIENZA V, VINCIGUERRA M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms[J]. Chronobiol Int, 2012, 29(3): 227-251.

[14]WILLEBRORDS J, PEREIRA IV, MAES M, et al. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research[J]. Prog Lipid Res, 2015, 59: 106-125.

[15]FANG YL, CHEN H, WANG CL, et al. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”[J]. World J Gastroenterol, 2018, 24(27): 2974-2983.

[16]ONYEKWERE CA, OGBERA AO, SAMAILA AA, et al. Nonalcoholic fatty liver disease: Synopsis of current developments[J]. Niger J Clin Pract, 2015, 18(6): 703-712.

[17]WEI GC, HE JY.  Traditional Chinese medicine intervention to nonalcoholic fatty liver disease based on physique identi cation[J].  J Changchun Univ Chin Med, 2018, 34(3): 518-521. (in Chinese)

魏功昌, 何瑾瑜.  中医体质辨识治疗非酒精性脂肪性肝病[J].  长春中医药大学学报, 2018, 34(3): 518-521.

[18]REBRIN K, STEIL GM, MITTELMAN SD, et al. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs[J]. J Clin Invest, 1996, 98(3): 741-749.

[19]SHULMAN GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease[J]. N Engl J Med, 2014, 371(23): 2237-2238.

[20]SACHDEV MS, RIELY CA, MADAN AK. Nonalcoholic fatty liver disease of obesity[J]. Obes Surg, 2006, 16(11): 1412-1419.

[21]CARDOSO AR, CABRAL-COSTA JV, KOWALTOWSKI AJ. Effects of a high fat diet on liver mitochondria: Increased ATP-sensitive K+ channel activity and reactive oxygen species generation[J]. J Bioenerg Biomembr, 2010, 42(3): 245-253.

[22]FELDSTEIN AE, WERNEBURG NW, CANBAY A, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway[J]. Hepatology, 2004, 40(1): 185-194.

[23]TOMITA K, TAMIYA G, ANDO S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice[J]. Gut, 2006, 55(3): 415-424.

[24]PAZ-FILHO G, MASTRONARDI C, FRANCO CB, et al. Leptin: Molecular mechanisms, systemic pro-inflammatory effects, and clinical implications[J]. Arq Bras Endocrinol Metabol, 2012, 56(9): 597-607.

[25]KAPIL S, DUSEJA A, SHARMA BK, et al. Small intestinal bacterial overgrowth andtoll-like receptor signaling in patients with non-alcoholic fatty liver disease[J]. J Gastroenterol Hepatol, 2016, 31(1): 213-221.

[26]LANASPA MA, SANCHEZ-LOZADA LG, CHOI YJ, et al. Uric acid induces heaptic steatosis by generation of mitochondrial oxidative stress: Potential role in fructose-dependent and -independent fatty liver[J]. J Biol Chem, 2012, 287(48): 40732-40744.

[27]GIUDICE EM, GRANDONE A, CIRILLO G, et al. The association of PNPLA3 variants with liver enzymes in childhood obesity is driven by the interaction with abdominal fat[J]. PLoS One, 2011, 6(11): e27933.

[28]ZANI F, BREASSON L, BECATTINI B, et al. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression[J]. Mol Metab, 2013, 2(3): 292-305.

[29]GRIMALDI B, BELLET MM, KATADA S, et al. PER2 controls lipid metabolism by direct regulation of PPARgamma[J]. Cell Metab, 2010, 12(5): 509-520.

[30]ZHOU D, WANG Y, CHEN L, et al. Evolving roles of circadian rhythms in liver homeostasis and pathology[J]. Oncotarget, 2016, 7(8): 8625-8639.

[31]MARION-LETELLIER R, SAVOYE G, GHOSH S. Fatty acids, eicosanoids and PPAR gamma [J]. Eur J Pharmacol, 2016, 785: 44-49.

[32]YANG G, JIA Z, AOYAGI T, et al. Systemic PPARgamma deletion impairs circadian rhythms of behavior and metabolism[J]. PLoS One, 2012, 7(8): e38117.

[33]LI S, LIN JD. Molecular control of circadian metabolic rhythms[J]. J Appl Physiol (1985), 2009, 107(6): 1959-1964.

[34]FU J, GAETANI S, OVEISI F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha[J]. Nature, 2003, 425(6953): 90-93.

[35]CHO H, ZHAO X, HATORI M, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta[J]. Nature, 2012, 485(7396): 123-127.

[36]TAHARA Y, SHIBATA S. Circadian rhythms of liver physiology and disease: Experimental and clinical evidence[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(4): 217-226.

[37]LAMIA KA, PAPP SJ, YU RT, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor[J]. Nature, 2011, 480(7378): 552-556.

[38]SUN S, ZHOU L, YU Y, et al. Knocking down clock control gene CRY1 decreases adipogenesis via canonical Wnt/beta-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2018, 506(3): 746-753.

[39]ZHANG EE, LIU Y, DENTIN R, et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis[J]. Nat Med, 2010, 16(10): 1152-1156.

[40]MARCHEVA B, RAMSEY KM, BUHR ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature, 2010, 466(7306): 627-631.

[41]LAMIA KA, STORCH KF, WEITZ CJ. Physiological significance of a peripheral tissue circadian clock[J]. Proc Natl Acad Sci U S A, 2008, 105(39): 15172-15177.

[42]JACOBI D, LIU S, BURKEWITZ K, et al. Hepatic bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness[J]. Cell Metab, 2015, 22(4): 709-720.

[43]DUMBELL R, MATVEEVA O, OSTER H. Circadian clocks, stress, and immunity[J]. Front Endocrinol (Lausanne), 2016, 7: 37.

[44]ASTIZ M, OSTER H. Perinatal programming of circadian clock-stress crosstalk[J]. Neural Plast, 2018, 2018: 5689165.

[45]YANG S, LIU A, WEIDENHAMMER A, et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms[J]. Endocrinology, 2009, 150(5): 2153-2160.

[46]RUTTER J, REICK M, WU LC, et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors[J]. Science, 2001, 293(5529): 510-514.

[47]ASHER G, SCHIBLER U. Crosstalk between components of circadian and metabolic cycles in mammals[J]. Cell Metab, 2011, 13(2): 125-137.

[48]KIL IS, LEE SK, RYU KW, et al. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria[J]. Mol Cell, 2012, 46(5): 584-594.

[49]NEUFELD-COHEN A, ROBLES MS, AVIRAM R, et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins[J]. Proc Natl Acad Sci U S A, 2016, 113(12): e1673-e1682.

终于被你滚到底了

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多