薛定谔方程在量子力学中,薛定谔方程(Schrödinger equation)是描述物理系统的量子态怎样随时间演化的偏微分方程,为量子力学的基础方程之一。它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。薛定谔方程表明量子力学中,粒子以概率的方式出现,具有不确定性,宏观尺度下失效可忽略不计。 方程定义薛定谔方程(Schrodingerequation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当,超弦理论试图统一两种理论。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,其正确性只能靠实验来确定。 薛定谔方程 量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。 薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当涉及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。 .薛定谔提出的量子力学基本方程 。建立于 1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,它是定态能量,Ψ(r)又称为属于本征值E的本征函数。 薛定谔方程是量子力学的基本方程,它揭示了微观物理世界物质运动的基本规律,如牛顿定律在经典力学中所起的作用一样,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。 背景与发展1900年,马克斯·普朗克在研究黑体辐射中作出将电磁辐射能量量子化的假设,因此发现将能量与频率关联在一起的普朗克关系式。1905年,阿尔伯特·爱因斯坦从对于光电效应的研究又给予这关系式崭新的诠释:频率为ν的光子拥有的能量为hν;其中,因子h是普朗克常数。这一点子成为后来波粒二象性概念的早期路标之一。由于在狭义相对论里,能量与动量的关联方式类似频率与波数的关联方式,因此可以揣测,光子的动量与波长成反比,与波数成正比,以方程来表示这关系式。 路易·德布罗意认为,不单光子遵守这关系式,所有粒子都遵守这关系式。他于1924年进一步提出的德布罗意假说表明,每一种微观粒子都具有波动性与粒子性,这性质称为波粒二象性。电子也不例外的具有这种性质。电子是一种物质波,称为“电子波”。电子的能量与动量分别决定了伴随它的物质波所具有的频率与波数。在原子里,束缚电子形成驻波;这意味着他的旋转频率只能呈某些离散数值。这些量子化轨道对应于离散能级。从这些点子,德布罗意复制出玻尔模型的能级。 在1925年,瑞士苏黎世每两周会举办一场物理学术研讨会。有一次,主办者彼得·德拜邀请薛定谔讲述关于德布罗意的波粒二象性博士论文。那段时期,薛定谔正在研究气体理论,他从阅读爱因斯坦关于玻色-爱因斯坦统计的论述中,接触德布罗意的博士论文,在这方面有很精深的理解。在研讨会里,他将波粒二象性阐述的淋漓尽致,大家都听的津津有味。德拜指出,既然粒子具有波动性,应该有一种能够正确描述这种量子性质的波动方程。他的意见给予薛定谔极大的启发与鼓舞,他开始寻找这波动方程。检试此方程最简单与基本的方法就是,用此方程来描述氢原子内部束缚电子的物理行为,而必能复制出玻尔模型的理论结果,另外,这方程还必须能解释索末菲模型给出的精细结构。 很快,薛定谔就通过德布罗意论文的相对论性理论,推导出一个相对论性波动方程,他将这方程应用于氢原子,计算出束缚电子的波函数。因为薛定谔没有将电子的自旋纳入考量,所以从这方程推导出的精细结构公式不符合索末菲模型。他只好将这方程加以修改,除去相对论性部分,并用剩下的非相对论性方程来计算氢原子的谱线。解析这微分方程的工作相当困难,在其好朋友数学家赫尔曼·外尔鼎力相助下,他复制出了与玻尔模型完全相同的答案。因此,他决定暂且不发表相对论性部分,只把非相对论性波动方程与氢原子光谱分析结果,写为一篇论文。1926年,他正式发表了这论文。 这篇论文迅速在量子学术界引起震撼。普朗克表示“他已阅读完毕整篇论文,就像被一个迷语困惑多时,渴慕知道答案的孩童,现在终于听到了解答”。爱因斯坦称赞,这著作的灵感如同泉水般源自一位真正的天才。爱因斯坦觉得,薛定谔已做出决定性贡献。由于薛定谔所创建的波动力学涉及到众所熟悉的波动概念与数学,而不是矩阵力学中既抽象又陌生的矩阵代数,量子学者都很乐意地开始学习与应用波动力学。自旋的发现者乔治·乌伦贝克惊叹,“薛定谔方程给我们带来极大的解救!”沃尔夫冈·泡利认为,这论文应可算是最重要的著作之一。 薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。在那时,物理学者尚不清楚如何诠释波函数,薛定谔试图以电荷密度来诠释波函数的绝对值平方,可并不成功。1926年,玻恩提出概率幅的概念,成功地诠释了波函数的物理意义。但是薛定谔与爱因斯坦观点相同,都不赞同这种统计或概率方法,以及它所伴随的非连续性波函数坍缩。爱因斯坦主张,量子力学是个决定性理论的统计近似。在薛定谔有生的最后一年,写给玻恩的一封信中,他清楚地表示他不接受哥本哈根诠释。 |
|
来自: kanglanlan > 《科普、科幻、冷知识》