(一) 小学数学专业知识考试范围预测 1.数的认识 ⑴整数、分数、小数和百分数的意义,数的改写和求近似数;数位和数级的顺序、名称及计数单位间的关系;比较分数、小数和百分数的大小。 ⑵小数的性质、分数的基本性质,约分和通分;分数、小数和百分数之间的关系。 ⑶有理数的意义、大小。 ⑷平方根、算术平方根、立方根、无理数和实数的概念。 2.数的运算与性质 ⑴四则运算的意义、运算法则和运算定律;口算、笔算、估算的基本方法和相应算理。 ⑵积的变化规律、商不变的性质和小数的性质。 ⑶比和比例的各部分名称及相互关系;比、比例的意义和基本性质;正比例和反比例的意义,解决比例的有关问题。 ⑷常见的数量关系。 ⑸实数的加、减、乘、除、乘方及简单的混合运算。 ⑹整除、约数、倍数的定义,用定义证明整除问题。 ⑺带余除法的意义、带余除法表达式。 ⑻奇数、偶数的定义和性质,奇偶分析法。 ⑼被2,3,5整除的数的特征。 ⑽因数(约数)、倍数、质数(素数)、合数、质因数、最大公因数(最大公约数)和最小公倍数以及互质数的概念;分解质因数;最大公因数、最小公倍数及其应用。 3.常见的量 ⑴常用的时间单位、长度单位、质量单位和面积单位以及体积与容积单位。 ⑵用单位间的进率进行单位换算。 4.代数式与方程 ⑴用字母表示数的意义,列代数式,求代数式的值。 ⑵整数指数幂的意义和基本性质;整式,整式的加法、减法和乘法运算。 ⑶分式的概念、基本性质和运算。 ⑷二次根式,二次根式的性质及其加、减、乘、除运算法则。 ⑸等式的性质;方程、方程的解。 ⑹一元一次方程、一元二次方程、二元一次方程(组)、分式方程的概念、解法及其应用,检验方程的解是否合理。 5.不等式 ⑴不等式的概念与基本性质,简单不等式的解法。 ⑵一元一次不等式(组)及其简单应用。 ⑶用比较法、综合法、分析法等证明简单的不等式。 ⑷基本不等式:。 6.集合 ⑴集合,元素与集合间的关系,集合的表示方法。 ⑵集合之间的包含和相等关系;全集与空集的含义。 ⑶并集、交集和补集的含义、运算;用韦恩图表示简单集合间的关系与运算。 ⑷区间及其表示方法。 7.函数 ⑴映射与函数的概念;求简单函数的定义域和值域;反函数,求简单函数的反函数。 ⑵常量、变量;一次函数、正比例函数、反比例函数、二次函数的概念、性质和应用。 ⑶函数的奇偶性、单调性和周期性;判断简单函数的奇偶性、周期性。 ⑷复合函数的概念,将复合函数分解成几个简单函数。 ⑸分数指数幂的概念、运算及性质;对数的概念和运算性质。 ⑹初等函数的概念;幂函数、指数函数、对数函数的概念、图像和性质。 ⑺角、弧度制、任意角的三角函数、三角函数线等概念,同角三角函数的基本关系,正弦、余弦的诱导公式;两角和与差以及二倍角的正弦、余弦和正切公式;正弦函数、余弦函数的图像和性质。 ⑻正弦定理、余弦定理及其应用。 8.数列 ⑴数列的概念、表示法。 ⑵等差数列,等差数列的通项公式与前n项和公式,用等差数列的有关知识解决简单问题。 ⑶等比数列,等比数列的通项公式与前n项和公式,用等比数列的有关知识解决简单问题。 9.极限 ⑴数列极限、函数极限的定义。 ⑵极限的四则运算和两个重要极限,求数列和函数的极限。 ⑶函数连续的定义,求函数的连续区间和间断点。 ⑷闭区间上连续函数的性质及其应用。 10.导数 ⑴导数的定义及其几何意义。 ⑵基本求导公式,导数的四则运算法则。 ⑶复合函数求导法则,隐函数及参数方程确定的函数求导法则。 ⑷二阶导数的定义及求法。 ⑸微分的定义;基本初等函数的微分公式与微分的运算法则。 ⑹可导、可微与连续之间的关系。 ⑺可导函数在某点取得极值的必要条件和充分条件;用导数讨论初等函数的单调性和极值,解决与最值有关的实际问题。 11.积分 ⑴不定积分的定义、性质与基本积分公式。 ⑵定积分的定义与性质、几何意义;牛顿-莱布尼茨公式;求简单函数的定积分。 ⑶定积分在几何与物理中的简单应用。 ⑷用定积分求曲边梯形的面积、旋转体的体积的思想方法。 |
|
来自: 昵称32901809 > 《待分类》