分享

2020年中考数学二次函数压轴题之动点问题

 当以读书通世事 2020-05-26

(1)求直线 OA 及抛物线的解析式;

(2)过点 P 作 x 轴的垂线,垂足为 D,并与直线 OA 交于点 C,当 △PCO 为等腰三角形时,求 D 的坐标;

(3)设 P 关于对称轴的点为 Q,抛物线的顶点为 M,探索是否存在一点 P,使得 △PQM 的面积为 1/8,如果存在,求出 P 的坐标;如果不存在,请说明理由.

【解析】

解:

(1)设直线 OA 的解析式为 y1=kx,

把点 A 坐标(3,3)代入得:k=1,

直线 OA 的解析式为 y=x;

再设 y2=ax(x﹣4),

把点 A 坐标(3,3)代入得:a=﹣1,

函数的解析式为 y=﹣x2+4x,

∴ 直线 OA 的解析式为 y=x,二次函数的解析式是 y=﹣x2+4x.

(2)设 D 的横坐标为 m,则 P 的坐标为(m,﹣m2+4m),

∵ P 为直线 OA 上方抛物线上的一个动点,

∴ 0<m<3.

此时仅有 OC=PC,CO=√2 OD=√2 m,

∴ ﹣m2+3m = √2 m,解得 m = 3 - √2 ,

∴ D(3 - √2 ,0);

(3)函数的解析式为 y=﹣x2+4x,

∴ 对称轴为 x=2,顶点 M(2,4),

设 P(n,﹣n2+4n),则点 P 关于对称轴的对称点 Q(4﹣n,﹣n2+4n),

M 到直线 PQ 的距离为 4﹣(﹣n2+4n)=(n﹣2)2,

要使 △PQM 的面积为 1/8,则

2020年中考数学二次函数压轴题之动点问题

解得:n = 3/2 或 n = 5/2,

∴ P(3/2,15/4)或 P(5/2,15/4).

【分析】

1、会用待定系数法求一次函数、二次函数解析式,其中二次函数的三种解析式:顶点式、一般式、两根式要掌握,本题巧设两根式来求二次函数的解析式。

2、此类问题需要画出草图,用数形结合的思想去解决问题,还需注意题中的限制性条件 P 点的位置。

2020年中考数学二次函数压轴题之动点问题

注意两个细节:

① 一定要注意 P 为直线 OA 上方抛物线上的一个动点这个限制性条件:(m 为点 D 的横坐标)

﹣m2+4m > m , 这是个一元二次不等式,解得 0<m<3,这样的等腰三角形只能有一个。

② 由第一问可知直线 OA 的解析式是正比例函数,从而可知 △ODC 是等腰直角三角形,只设出 D 点的横坐标,P 点的坐标就知道了,结合题目中的已知条件,当 △PCO 为等腰三角形时,很容易建立起数量关系 PC = OC,得到一个方程,从而求出点 D 的坐标。

3、先把 P 点的坐标设出来(原则上要尽量减少未知数的个数),通过坐标中点公式,把 Q 点的坐标也表示出来,在通过三角形面积公式,从而建立一个方程求出 P 点的坐标。

2020年中考数学二次函数压轴题之动点问题

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多