前言最近看了几篇有关于分布式事务的博文,做一下笔记。哈哈~ 数据库事务数据库事务(简称:事务),是数据库管理系统执行过程中的一个逻辑单位,由一个有限的数据库操作序列构成,这些操作要么全部执行,要么全部不执行,是一个不可分割的工作单位。 数据库事务的几个典型特性:原子性(Atomicity )、一致性( Consistency )、隔离性( Isolation)和持久性(Durabilily),简称就是ACID。
事务的实现原理本地事务传统的单服务器,单关系型数据库下的事务,就是本地事务。本地事务由资源管理器管理,JDBC事务就是一个非常典型的本地事务。 事务日志innodb事务日志包括redo log和undo log。 redo log(重做日志)redo log通常是物理日志,记录的是数据页的物理修改,而不是某一行或某几行修改成怎样,它用来恢复提交后的物理数据页。 undo log(回滚日志)undo log是逻辑日志,和redo log记录物理日志的不一样。可以这样认为,当delete一条记录时,undo log中会记录一条对应的insert记录,当update一条记录时,它记录一条对应相反的update记录。 事务ACID特性的实现思想
分布式事务分布式事务: 就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。简单来说,分布式事务指的就是分布式系统中的事务,它的存在就是为了保证不同数据库节点的数据一致性。 为什么需要分布式事务?接下来分两方面阐述: 微服务架构下的分布式事务随着互联网的快速发展,轻盈且功能划分明确的微服务,登上了历史舞台。比如,一个用户下订单,购买直播礼物的服务,被拆分成三个service,分别是金币服务(coinService),下订单服务(orderService)、礼物服务(giftService)。这些服务都部署在不同的机器上(节点),对应的数据库(金币数据库、订单数据库、礼物数据库)也在不同节点上。 用户下单购买礼物,礼物数据库、金币数据库、订单数据库在不同节点上,用本地事务是不可以的,那么如何保证不同数据库(节点)上的数据一致性呢?这就需要分布式事务啦~ 分库分表下的分布式事务随着业务的发展,数据库的数据日益庞大,超过千万级别的数据,我们就需要对它分库分表(以前公司是用mycat分库分表,后来用sharding-jdbc)。一分库,数据又分布在不同节点上啦,比如有的在深圳机房,有的在北京机房~你再想用本地事务去保证,已经无动于衷啦~还是需要分布式事务啦。 比如A转10块给B,A的账户数据是在北京机房,B的账户数据是在深圳机房。流程如下: CAP 理论&BASE 理论学习分布式事务,当然需要了解 CAP 理论和BASE 理论。 CAP理论CAP理论作为分布式系统的基础理论,指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),这三个要素最多只能同时实现两点。 一致性(C:Consistency): 一致性是指数据在多个副本之间能否保持一致的特性。例如一个数据在某个分区节点更新之后,在其他分区节点读出来的数据也是更新之后的数据。 可用性(A:Availability): 可用性是指系统提供的服务必须一直处于可用的状态,对于用户的每一个操作请求总是能够在有限的时间内返回结果。这里的重点是"有限时间内"和"返回结果"。 分区容错性(P:Partition tolerance): 分布式系统在遇到任何网络分区故障的时候,仍然需要能够保证对外提供满足一致性和可用性的服务。
BASE 理论BASE 理论, 是对CAP中AP的一个扩展,对于我们的业务系统,我们考虑牺牲一致性来换取系统的可用性和分区容错性。BASE是Basically Available(基本可用),Soft state(软状态),和 Eventually consistent(最终一致性)三个短语的缩写。 Basically Available 基本可用:通过支持局部故障而不是系统全局故障来实现的。如将用户分区在 5 个数据库服务器上,一个用户数据库的故障只影响这台特定主机那 20% 的用户,其他用户不受影响。 Soft State 软状态,状态可以有一段时间不同步 Eventually Consistent 最终一致,最终数据是一致的就可以了,而不是时时保持强一致。 分布式事务的几种解决方案分布式事务解决方案主要有以下这几种:
二阶段提交方案二阶段提交方案是常用的分布式事务解决方案。事务的提交分为两个阶段:准备阶段和提交执行方案。 二阶段提交成功的情况准备阶段,事务管理器向每个资源管理器发送准备消息,如果资源管理器的本地事务操作执行成功,则返回成功。 提交执行阶段,如果事务管理器收到了所有资源管理器回复的成功消息,则向每个资源管理器发送提交消息,RM 根据 TM 的指令执行提交。如图: 二阶段提交失败的情况准备阶段,事务管理器向每个资源管理器发送准备消息,如果资源管理器的本地事务操作执行成功,则返回成功,如果执行失败,则返回失败。 提交执行阶段,如果事务管理器收到了任何一个资源管理器失败的消息,则向每个资源管理器发送回滚消息。资源管理器根据事务管理器的指令回滚本地事务操作,释放所有事务处理过程中使用的锁资源。 二阶段提交优缺点2PC方案实现起来简单,成本较低,但是主要有以下缺点:
TCC(补偿机制)TCC 采用了补偿机制,其核心思想是:针对每个操作,都要注册一个与其对应的确认和补偿(撤销)操作。 TCC(Try-Confirm-Cancel)模型TCC(Try-Confirm-Cancel)是通过对业务逻辑的分解来实现分布式事务。针对一个具体的业务服务,TCC 分布式事务模型需要业务系统都实现一下三段逻辑: try阶段:尝试去执行,完成所有业务的一致性检查,预留必须的业务资源。 Confirm阶段:该阶段对业务进行确认提交,不做任何检查,因为try阶段已经检查过了,默认Confirm阶段是不会出错的。 Cancel 阶段:若业务执行失败,则进入该阶段,它会释放try阶段占用的所有业务资源,并回滚Confirm阶段执行的所有操作。 TCC 分布式事务模型包括三部分:主业务服务、从业务服务、业务活动管理器。
下面再拿用户下单购买礼物作为例子来模拟TCC实现分布式事务的过程:
TCC的Try阶段:
TCC的Confirm阶段:
TCC的Cancel阶段:
TCC优缺点TCC方案让应用可以自定义数据库操作的粒度,降低了锁冲突,可以提升性能,但是也有以下缺点:
本地消息表ebay最初提出本地消息表这个方案,来解决分布式事务问题。业界目前使用这种方案是比较多的,它的核心思想就是将分布式事务拆分成本地事务进行处理。可以看一下基本的实现流程图: 基本实现思路发送消息方:
消息消费方:
生产方和消费方定时扫描本地消息表,把还没处理完成的消息或者失败的消息再发送一遍。如果有靠谱的自动对账补账逻辑,这种方案还是非常实用的。 优点&缺点:该方案的优点是很好地解决了分布式事务问题,实现了最终一致性。缺点是消息表会耦合到业务系统中。 最大努力通知什么是最大通知最大努力通知也是一种分布式事务解决方案。下面是企业网银转账一个例子
最大努力通知方案的目标,就是发起通知方通过一定的机制,最大努力将业务处理结果通知到接收方。最大努力通知实现机制如下: 最大努力通知解决方案要实现最大努力通知,可以采用MQ的ack机制。 方案
转账业务实现流程图: 交互流程如下:
Saga事务Saga事务由普林斯顿大学的Hector Garcia-Molina和Kenneth Salem提出,其核心思想是将长事务拆分为多个本地短事务,由Saga事务协调器协调,如果正常结束那就正常完成,如果某个步骤失败,则根据相反顺序一次调用补偿操作。 saga简介
Saga的执行顺序
Saga两种恢复策略
举个例子,假设用户下订单,花10块钱购买了10多玫瑰,则有 T1=下订单 ,T2=扣用户10块钱,T3=用户加10朵玫瑰, T4=库存减10朵玫瑰 C1=取消订单 ,C2= 给用户加10块钱,C3 =用户减10朵玫瑰, C4=库存加10朵玫瑰 假设事务执行到T4发生异常回滚,在C4的要把玫瑰给库存加回去的时候,发现用户的玫瑰都用掉了,这是Saga的一个缺点,由于事务之间没有隔离性导致的问题。 可以通过以下方案解决这个问题:
参考与感谢
个人公众号
|
|