配色: 字号:
11.3.1 多边形
2020-12-09 | 阅:  转:  |  分享 
  
www.czsx.com.cn11.3.1多边形第十一章三角形导入新课讲授新课当堂练习课堂小结11.3多边形及其内角
和情境引入学习目标1.掌握多边形的定义及有关概念,能区分凹凸多边形.2.掌握正多边形的概念.(重点)3.会求多边形的对角
线的条数.(难点)导入新课情景引入在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图
形吗?中国第一奇村诸葛八卦村美国国防部大楼——五角大楼讲授新课多边形的定义及相关概念一问题2观察画某多边形的过
程,类比三角形的概念,你能说出什么是多边形吗?在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.问题1什么是三角
形?由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.思考:比较多边形的定义与三角形的定义,为什么要强调“在平面
内”呢?怎样命名多边形呢?这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.
多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.内角:多边形相邻两边组成的角
问题3根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角.顶点边外角:多边形的边与它的邻边的延长线组成
的角.n边形有n个顶点,n条边,n个内角,2n个外角.多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的
多边形.问题4请分别画出下列两个图形各边所在的直线,你能得到什么结论?(1)(2)如图(1)这样,画出多边形的
任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.本节我们只讨论凸多边形.ABCDE
FGH此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.例1凸六边形纸片剪去一个角后,得到的多
边形的边数可能是多少?画出图形说明.解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7、5、6三种
情况,如图所示.一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.总结典例精析多边形的
对角线二ABCDE定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.线段AC是五边形ABCDE
的一条对角线,多边形的对角线通常用虚线表示.注意三角形六边形四边形八边形……五边形探究:请画出下列图形从某一顶点
出发的对角线的条数:多边形三角形四边形五边形六边形八边形n边形从同一顶点引出的对角线的条数分割出的三角形的个
数01235n-312346n-2从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形
分成(n-2)个三角形.n(n≥3)边形共有对角线条.归纳总结例2过多边形的一个顶点的所有对角线的条
数与这些对角线分该多边形所得三角形的个数的和为21,求这个多边形的边数.解:设这个多边形为n边形,则有(n-3)条对角线,所分得
的三角形个数为n-2,∴n-3+n-2=21,解得n=13.答:该多边形的边数有13条.www.czsx.com.cn
献花(0)
+1
(本文系as焕焕1首藏)