导读:数据治理:说起来容易,做起来难。 “数据治理”这个10多年前就已经出现的名称,在最近这几年时间一下子火了起来。不知何时,江湖中流传出了:“数字转型、治理先行”的说法。 于是乎,我们看到:不仅是传统提供数据仓库、BI、主数据管理、元数据管理、数据集成等数据服务的软件供应商在说数据治理,“BATJ”等互联网公司,大型国企、央企也都在谈数据治理,很多企业都将数据治理作为数智化战略的一项必要举措,列入了企业的战略行动计划。 在众多谈论数据治理的企业或个人中,笔者发现大家对数据治理有着一个普遍的共识,那就是:“数据治理说起来容易,做起来难”! 01 为什么要做数据治理,真的想透了吗? 在做数据治理咨询的过程中,经常会遇到以下对话场景:
到此为止,采用咨询常用的5Why分析法,似乎已经get出了数据治理的现状和目标。我们将其总结下:通过数据治理实现企业数据的标准化、提高数据质量、提升业务处理的效率,为数据分析提供准确的数据支撑,赋能业务,助力企业实现数字化转型。 但是,我们仔细分析这样的调研结果是浮于表面的,围绕数据的问题在原地打转,没有将为什么要做数据治理真正想透。 数据要产生价值,需要一个合理的“业务目标”,数据治理的所有活动应该围绕真实的业务目标而开展,建立数据标准、提升数据质量只是手段,而不是目标。因此数据治理的第一步不是分析数据问题,而是分析业务问题,找到企业的核心业务诉求,定义数据治理的目标和范围。 数据治理很火,在DAMA 数据管理知识体系指南中,数据治理位于数据管理“车轮图”的正中央,是数据架构、数据建模、数据存储、数据安全、数据质量、元数据管理、主数据管理等10大数据管理领域的总纲,为各项数据管理活动提供总体指导策略。 ▲DAMA-DMBOK2.0 数据管理车轮图 谈到数据治理,我们经常讲它是一个涉及到企业战略、组织架构、数据标准、管理规范、数据文化、技术工具的一个综合体。没有数据治理实践经验的,一定会认为:哇,数据治理好“高大上”呀!又是战略、又是标准、又是文化的,听起来很高深吗! 然而,只有你真正做过数据治理人才知道:数据治理不仅都是苦活、累活,还是个受累不讨好,经常背锅,领导看不见价值的活。 都说数据是资产,数据治理很重要。尽快大家都说数据治理很重要,领导也很重视,但在很多企业真正实施的过程中,却总会遇到高层领导支持力度不足,业务部门人员配合不到位,数据治理的总是要给业务让路等等问题。 究其原因:领导说重视数据,是真重视,还是嘴上说说?有没有将其纳入企业的战略行动计划? 数据治理要定战略、定制度、建组织,这是顶层策略,这每一项都牵一发而动全身,都需要高层领导的大力支持和推动,业务部门和技术部门的紧密协同。 数据治理要立标准、理流程、清数据,需要对每个数据域、数据实体、数据条目、数据项进行梳理和标准化,甚至有时候需要人工逐条、逐字段的定义数据标准、核实数据质量。 数据治理人员不仅要有良好的数据思维,还要有足够的细心、耐心和体力才能实现企业数据质量的不断提升,打磨出适合企业的数据标准。 数据治理过程中,有时候是不被理解的。数据治理是个地基性工程,人们看到的永远是数据应用的“高楼大厦”,数据治理团队天天忙忙碌碌的,领导也不知道“这伙人”到底都在干啥?但是,只要数据出现问题,第一个被问责的就是数据治理团队。 03 数据治理不是一个“项目”,想要立竿见影的效果?难! 项目是一系列独特的、复杂的并相互关联的活动,这些活动有着一个明确的目标或目的,必须在特定的时间、预算、资源限定内,依据规范完成。 那么,数据治理是项目吗? 是,当然是。 不论是全面的资产管理,还是针对特定领域的数据治理,都需要组建项目团队、定义项目目标和范围、制定项目计划、推进项目实施、最后是项目总结和结案。数据治理有明确的目标,有特定范围、质量、成本、时间、资源要求,从定义上讲数据治理当然是项目。 但是,通过一个数据治理项目的实施,即使这个项目预算很大,周期很长,是否就能解决企业数据管理和使用中的各种问题?是否就能培养出企业的数据文化,转变人们的数字化思维?是否就能实现企业管理和业务模式的创新? 一定不可能! 数据治理的最终目标是赋能业务,提升数据价值。这是一个持续漫长的运营过程,需要逐步完善、分步迭代,指望一步到位完成数据治理是不现实的。 项目型的数据治理,是不全面的,无延续性,能够解决一时的数据问题,但很难获得持续的数据价值。 因此说,数据治理不是一个“项目”,而是一个持续运营的过程。我们也可以将这个过程,看作是由一个个数据治理“微项目”组成,连续的、螺旋上升的模型。一个项目的结案,不是企业数据治理的终点,而是企业数据治理真正的起点! 04 做了数据治理,为什么数据质量依然很差,咋办? 一个网友留言:石老师,我们公司两年前就做了数据治理,建立了数据治理平台,元数据管理、数据质量管理等功能都有了,但是我们的数据质量问题还是很多,导致花了很多钱建设的BI系统基本都没人用,请问有什么好的方式解决? 这个问题,我没有答复。原因是数据质量差、BI用不起来,这个问题虽然常见,但是10家有相同问题的企业中,有9家的原因是不一样的。在没有经过详细调查,不了解具体背景的情况下,不敢贸然给出建议。 我曾盘点了引发数据质量问题的各种原因:
做过了数据治理,企业的数据质量就一定能提升吗?其原意是要问:上过了数据治理系统或实施了数据治理项目,为什么还会有数据质量问题。 这个问题很复杂。正如上文中的项目型数据治理,点到为止,治标不治本。有的企业认为数据治理就是上一套强大的数据治理平台,只要平台功能强大,就能管好数据,这恰恰是陷入了另一个误区——唯工具论,岂不知数据治理的本质是管理数据,而不是管理程序、脚本和任务。 另外,还有很多企业是出现了数据问题,并且对业务造成很大影响之后才去进行治理的——被动式治理,失去了治理数据的主动权,常常是解决了一个问题又引出了更多的问题。 …… 世界上没有“包治百病”的数据平台,只有将数据治理常态化,持续地去做才是王道。 05 数据治理之道是什么,要怎么做? 前段时间,在网上看到一篇关于数据治理关键要素的总结文章,觉得写的很好,引用过来,供大家参考:
06 最后的话 数据治理不是一蹴而就的,它是一个漫长而持续的过程,没有一针顶破天的诀窍,也没有立竿见影的途径。只有将数据治理变成一种常态化机制,就如同我们每天吃饭、睡觉一样,形成一种习惯、一种文化、持之以恒、不忘初心、不懈努力,才能达到预期目标。 |
|
来自: DICT观察者 > 《DICT软件技术服务》