知识点一、1神经调节的结构基础和反射 1、神经系统结构和功能的基本单位—— 神经元 神经元是神经系统结构和功能的基本单位,其功能是接受刺激产生兴奋,并传导兴奋。(★有些神经元具有内分泌功能,如:下丘脑的某些细胞可产生抗利尿激素、促激素释放激素等)。神经元的结构见下图: ★注:①神经元的轴突或长的树突+包裹在外的髓鞘→神经纤维→ 神经 ②一个神经元细胞有多个树突,但有且仅有一个轴突 2、神经调节的基本方式——反射 (1)概念:在中枢神经系统的参与下,动物体或人体对 外界环境变化作出的规律性应答。 (2) (3)反射的结构基础——反射弧
★注:①一个反射弧至少需要两个神经元:感觉神经元和运动神经元。 ②一个反射弧组成的神经元越多,形成的突触越多,完成反射的时间就越长。 ③刺激感受器或传出神经,信息都能传到效应器而使效应器产生相同的效应,但刺激前者产生的效应可以称做反射,但刺激后者产生的效应就不能称为反射,即反射活动的进行必须经过完整的反射弧。效应器产生的效应可以称做机体对刺激做出的反应,而只有经过完整反射弧的反应才能称为反射。 ④神经中枢的兴奋只影响效应器的效应活动而不影响感受器的敏感性。 ⑤反射弧只有保持其完整性,才能完成反射活动。 ⑥反射弧完整,还需有适宜刺激才能发生反射活动。 ⑦具有神经系统的多细胞生物才有反射,植物和单细胞生物没有反射。 (4)反射弧中传入神经和传出神经的判断 由于兴奋在神经元之间的传递是单向的,导致兴奋在完整反射弧中的传导也是单向的,只能由传入神经传入、传出神经传出。具体判断方法如下: ①根据是否具有神经节:具有神经节的是传入神经。 ②根据脊髓灰质内突触结构判断:图示中与“ ”相连的为传入神经,与“●—”相连的为传出神经。 ③切断试验法:若切断剪断或麻醉神经后,刺激远离中枢的位置效应器有反应,刺激近中枢的位置效应器无反应,证明是传出神经;刺激远离中枢的位置效应器无反应,刺激近中枢的位置效应器有反应,则证明为传入神经。 知识点二、兴奋在神经纤维上的传导 1、兴奋:指动物体或人体内的某些组织或细胞,感受外界刺激后,由相对静止状态变成显著活跃状态的过程,即动作电位的产生过程。 2、静息电位和动作电位 ①静息电位:细胞内外各种离子浓度不等,膜内K+浓度高,膜外Na+浓度高。静息状态,细胞膜上K+通道开放,K+外流,而膜内带负电的离子不能透过细胞膜,于是形成细胞膜内外“外正内负”的静息电位。 ②动作电位:当细胞受到刺激时,Na+离子通道开放,Na+内流大于K+外流,形成“外负内正”的动作电位 ③静息电位的恢复:动作电位产生后,通过Na+—K+离子泵,细胞排钠保钾,再恢复到静息电位。 ★注:兴奋产生和传导过程中Na+、K+的运输方式分析 ①静息电位产生时,K+由高浓度向低浓度运输,属于协助扩散 ②动作电位产生时,Na+的内流需要载体蛋白,同时由高浓度向低浓度运输,属于协助扩散 3、兴奋产生和传导的机制 (1)传导形式:兴奋是以动作电位即电信号的形式沿着神经纤维传导的,这种电信号也叫作神经冲动。 (2)传导过程 (3)传导特点:双向传导,刺激神经纤维的任何一点,所产生的神经冲动可沿神经纤维向两侧同时传导。(如下图) ①在膜外,局部电流的方向与兴奋传导方向相反 ②在膜内,局部电流的方向与兴奋传导方向相同 ★注:兴奋在离体的神经纤维上和生物体内神经纤维上的传导是不同的,在离体神经纤维上兴奋的传导是双向的;而在生物体内,神经纤维上的神经冲动只能来自感受器,因此在生物体内,兴奋在神经纤维上是单向传导的。 4、兴奋在神经纤维上传导的电流方向分析 (1)静息状态(如图所示,其中B测的是静息电位) ①电位都在膜外,电流计指针不偏转。 ②电极分别在膜内、外,电流计指针向电极置于膜内一侧偏转。 ③电极都在膜内,电流计指针不偏转。 (2)刺激神经纤维(如图所示) ①刺激a点,b点先兴奋(内正外负),电流计指针向左侧偏转;b点恢复静息电位(内负外正),但兴奋未传到d点,指针归零;d点兴奋(内正外负),电流计指针向右侧偏转;d点恢复静息电位,指针归零。电流计指针总共发生两次方向相反的偏转。 ②刺激c点(bc=cd),b点和d点同时兴奋,又同时恢复静息电位,所以电流计指针不发生偏转。 ★注:解题时要注意电流计在神经纤维上的位置,是膜内还是膜外,两极在同一侧还是不同侧。 知识点三、兴奋在神经元之间的传递 1、结构基础——突触 神经元的轴突末梢经过多次分支,最后每个小支末端膨大,呈杯状或球状,叫做突触小体。突触小体与其他神经元的细胞体、树突或肌肉细胞、腺体细胞等可兴奋细胞间相接触,共同形成突触 (1)突触的常见类型 ① 轴突——树突型: ② 轴突——胞体型: (2)突触的结构 ①突触前膜:轴突末端膨大的突触小体的膜 ②突触间隙:突触前膜和突触后膜之间的缝隙,其内液体属于组织液 ③突触后膜:下一神经元的细胞体膜或树突膜 ★注:突触小体≠突触:①组成不同:突触小体是上一个神经元轴突末端的膨大部分,其上的膜构成突触前膜,是突触的一部分;突触由两个神经元构成,包括突触前膜、突触间隙、突触后膜②信号转变不同:在突触小体上的信号变化为电信号→化学信号;在突触中完成的信号为电信号→化学信号→电信号。 2、神经递质及种类 (1)神经递质:是神经细胞产生的一种化学信使物质,对具有相应受体的神经细胞产生特异性反应(兴奋或抑制)。 (2)供体:轴突末端突触小体内的突触小泡。(但注意:神经递质只是在突触小泡内储存,并不在其中合成) (3)受体:与轴突相邻的另一个神经元的树突膜或细胞体膜上的糖蛋白。 (4)种类:兴奋型递质、抑制型递质。 (5)作用:使另一个神经元兴奋或抑制。 (6)释放:方式为胞吐,神经递质在该过程中穿过了0层膜,体现了膜的流动性 (7)特点:神经递质发生效应后,就被酶破坏而失活,或被移走而迅速停止作用。如果因药物或酶活性降低,递质不能失活,则会引起后一神经元持续兴奋或抑制。 3、兴奋的传递 (1)递质移动方向:突触小泡→ 神经递质(胞吐)→突触间隙→突触后膜 (与受体结合)。 (2)传递过程:前一个神经元轴突→突触小体→突触小泡→神经递质→突触前膜→突触间隙→突触后膜(后一个神经元)。 (3)信号转换:电信号→化学信号 →电信号 (兴奋) (递质) (兴奋) ★注:突触传递异常分析 ①正常情况下:神经递质与突触后膜上受体结合引起突触后膜兴奋或抑制后,立即被相应酶分解而失活。 ②异常情况1:若某种有毒有害物质将分解神经递质的相应酶变性失活,则突触后膜会持续兴奋或抑制。 ③异常情况2:若突触后膜上受体位置被某种有毒物质占据,则神经递质不能与之结合,突触后膜不会产生电位变化,阻断信息传递。 4、兴奋在神经元之间的传递特点分析 (1) 单向传递:递质只存在于突触小体的突触小泡内,只能由突触前膜释放,并作用于只存在于突触后膜的受体,与受体特异性结合,所以传递方向是单向的。 (2)突触延搁:兴奋在突触处的传递比在神经纤维上的传导要慢,这是因为兴奋由突触前神经末梢传至突触后神经元,需要经历神经递质的释放、扩散以及对突触后膜作用的过程,所以需要较长的时间(约0.5 ms),这段时间就叫做突触延搁。因此,一个反射需要的神经元越多,突触就越多,消耗的时间越长。 5、在神经元间,电流计指针偏转问题方法分析(ab=bd) ①刺激b点,由于兴奋在突触部位的传递速度小于在神经纤维上的传导速度,a点先兴奋,d点后兴奋,电流计发生两次方向相反的偏转。 ②刺激c点兴奋不能传至a,a点不兴奋,d点可兴奋,电流计只发生一次偏转。 知识点四、人脑的高级功能和神经系统的分级调节 1、中枢神经系统包括脑(大脑、小脑、脑干、下丘脑)和脊髓 ★注:位于脊髓的低级中枢受相应的高级中枢的调控 2、人脑的高级功能 大脑皮层是整个神经系统中最高级的部位,它除了对外部世界的感知以及控制机体的反射活动外,还具有语言、学习、记忆和思维等方面的高级功能。 3、人脑的言语区
4、短期记忆与长期记忆 短期记忆主要与神经元的活动及神经元之间的联系相关;长期记忆可能与新突触的建立有关 如果您感觉我提供的资源还不错,请点击一下文末的“点赞”、“在看”,或者将“囡波湾生物”公众号加★,如果转发请注明来源,感谢您的支持! 觉得不错就给我个“赞”和"在看"! |
|