前言TCP协议是大厂面试必问的知识点。整理了15道非常经典的TCP面试题,希望大家都找到理想的offer呀
1. 讲下TCP三次握手流程开始客户端和服务器都处于CLOSED状态,然后服务端开始监听某个端口,进入LISTEN状态
2.TCP握手为什么是三次,不能是两次?不能是四次?TCP握手为什么是三次呢?为了方便理解,我们以谈恋爱为例子:两个人能走到一起,最重要的事情就是相爱,就是我爱你,并且我知道,你也爱我,接下来我们以此来模拟三次握手的过程: 为什么握手不能是两次呢? 如果只有两次握手,女孩子可能就不知道,她的那句我也爱你,男孩子是否收到,恋爱关系就不能愉快展开。 为什么握手不能是四次呢? 因为握手不能是四次呢?因为三次已经够了,三次已经能让双方都知道:你爱我,我也爱你。而四次就多余了。 3. 讲下TCP四次挥手过程
4. TCP挥手为什么需要四次呢?举个例子吧! ★ 5. TIME-WAIT 状态为什么需要等待 2MSL2MSL,2 Maximum Segment Lifetime,即两个最大段生命周期 ★ 6.TCP 和 UDP 的区别
7. TCP报文首部有哪些字段,说说其作用
8. TCP 是如何保证可靠性的
9. TCP 重传机制超时重传TCP 为了实现可靠传输,实现了重传机制。最基本的重传机制,就是超时重传,即在发送数据报文时,设定一个定时器,每间隔一段时间,没有收到对方的ACK确认应答报文,就会重发该报文。 这个间隔时间,一般设置为多少呢?我们先来看下什么叫RTT(Round-Trip Time,往返时间)。 RTT就是,一个数据包从发出去到回来的时间,即数据包的一次往返时间。超时重传时间,就是Retransmission Timeout ,简称RTO。 RTO设置多久呢?
一般情况下,RTO略大于RTT,效果是最好的。一些小伙伴会问,超时时间有没有计算公式呢?有的!有个标准方法算RTO的公式,也叫Jacobson / Karels 算法。我们一起来看下计算RTO的公式 1. 先计算SRTT(计算平滑的RTT) SRTT = (1 - α) * SRTT α * RTT //求 SRTT 的加权平均 2. 再计算RTTVAR (round-trip time variation)
3. 最终的RTO RTO = µ * SRTT ∂ * RTTVAR = SRTT 4·RTTVAR 其中, 但是,超时重传会有这些缺点: ★ 并且,TCP有个策略,就是超时时间间隔会加倍。超时重传需要等待很长时间。因此,还可以使用快速重传机制。 快速重传快速重传机制,它不以时间驱动,而是以数据驱动。它基于接收端的反馈信息来引发重传。 一起来看下快速重传流程: 发送端发送了 1,2,3,4,5,6 份数据:
但快速重传还可能会有个问题:ACK只向发送端告知最大的有序报文段,到底是哪个报文丢失了呢?并不确定!那到底该重传多少个包呢? ★ 带选择确认的重传(SACK)为了解决快速重传的问题:应该重传多少个包? TCP提供了SACK方法(带选择确认的重传,Selective Acknowledgment)。 SACK机制就是,在快速重传的基础上,接收端返回最近收到的报文段的序列号范围,这样发送端就知道接收端哪些数据包没收到,酱紫就很清楚该重传哪些数据包啦。SACK标记是加在TCP头部选项字段里面的。 如上图中,发送端收到了三次同样的ACK=30的确认报文,于是就会触发快速重发机制,通过SACK信息发现只有 D-SACKD-SACK,即Duplicate SACK(重复SACK),在SACK的基础上做了一些扩展,,主要用来告诉发送方,有哪些数据包自己重复接受了。DSACK的目的是帮助发送方判断,是否发生了包失序、ACK丢失、包重复或伪重传。让TCP可以更好的做网络流控。来看个图吧: 10. 聊聊TCP的滑动窗口TCP 发送一个数据,需要收到确认应答,才会发送下一个数据。这样有个缺点,就是效率会比较低。 ★ 为了解决这个问题,TCP引入了窗口,它是操作系统开辟的一个缓存空间。窗口大小值表示无需等待确认应答,而可以继续发送数据的最大值。 TCP头部有个字段叫win,也即那个16位的窗口大小,它告诉对方本端的TCP接收缓冲区还能容纳多少字节的数据,这样对方就可以控制发送数据的速度,从而达到流量控制的目的。 ★ TCP 滑动窗口分为两种: 发送窗口和接收窗口。发送端的滑动窗口包含四大部分,如下:
接收方的滑动窗口包含三大部分,如下:
11. 聊聊TCP的流量控制TCP三次握手,发送端和接收端进入到ESTABLISHED状态,它们即可以愉快地传输数据啦。 但是发送端不能疯狂地向接收端发送数据,因为接收端接收不过来的话,接收方只能把处理不过来的数据存在缓存区里。如果缓存区都满了,发送方还在疯狂发送数据的话,接收方只能把收到的数据包丢掉,这就浪费了网络资源啦。 ★ TCP通过滑动窗口来控制流量,我们看下流量控制的简要流程吧: 首先双方三次握手,初始化各自的窗口大小,均为 400 个字节。
12. TCP的拥塞控制拥塞控制是作用于网络的,防止过多的数据包注入到网络中,避免出现网络负载过大的情况。它的目标主要是最大化利用网络上瓶颈链路的带宽。它跟流量控制又有什么区别呢?流量控制是作用于接收者的,根据接收端的实际接收能力控制发送速度,防止分组丢失的。 我们可以把网络链路比喻成一根水管,如果我们想最大化利用网络来传输数据,那就是尽快让水管达到最佳充满状态。 发送方维护一个拥塞窗口cwnd(congestion window) 的变量,用来估算在一段时间内这条链路(水管)可以承载和运输的数据(水)的数量。它大小代表着网络的拥塞程度,并且是动态变化的,但是为了达到最大的传输效率,我们该如何知道这条水管的运送效率是多少呢? 一个比较简单的方法就是不断增加传输的水量,直到水管快要爆裂为止(对应到网络上就是发生丢包),用 TCP 的描述就是: ★ 实际上,拥塞控制主要有这几种常用算法
慢启动算法慢启动算法,表面意思就是,别急慢慢来。它表示TCP建立连接完成后,一开始不要发送大量的数据,而是先探测一下网络的拥塞程度。由小到大逐渐增加拥塞窗口的大小,如果没有出现丢包,每收到一个ACK,就将拥塞窗口cwnd大小就加1(单位是MSS)。每轮次发送窗口增加一倍,呈指数增长,如果出现丢包,拥塞窗口就减半,进入拥塞避免阶段。
为了防止cwnd增长过大引起网络拥塞,还需设置一个慢启动阀值ssthresh(slow start threshold)状态变量。当 拥塞避免算法一般来说,慢启动阀值ssthresh是65535字节,
显然这是一个线性上升的算法,避免过快导致网络拥塞问题。 拥塞发生当网络拥塞发生丢包时,会有两种情况:
如果是发生了RTO超时重传,就会使用拥塞发生算法
这真的是辛辛苦苦几十年,一朝回到解放前。其实还有更好的处理方式,就是快速重传。发送方收到3个连续重复的ACK时,就会快速地重传,不必等待RTO超时再重传。 慢启动阀值ssthresh 和 cwnd 变化如下:
快速恢复快速重传和快速恢复算法一般同时使用。快速恢复算法认为,还有3个重复ACK收到,说明网络也没那么糟糕,所以没有必要像RTO超时那么强烈。 正如前面所说,进入快速恢复之前,cwnd 和 sshthresh已被更新:
然后,真正的快速算法如下:
13. 半连接队列和 SYN Flood 攻击的关系TCP进入三次握手前,服务端会从CLOSED状态变为LISTEN状态,同时在内部创建了两个队列:半连接队列(SYN队列)和全连接队列(ACCEPT队列)。 什么是半连接队列(SYN队列) 呢? 什么是全连接队列(ACCEPT队列) 呢?回忆下TCP三次握手的图:
SYN Flood是一种典型的DoS (Denial of Service,拒绝服务) 攻击,它在短时间内,伪造不存在的IP地址,向服务器大量发起SYN报文。当服务器回复SYN ACK报文后,不会收到ACK回应报文,导致服务器上建立大量的半连接半连接队列满了,这就无法处理正常的TCP请求啦。 主要有 syn cookie和SYN Proxy防火墙等方案应对。
14. Nagle 算法与延迟确认Nagle算法如果发送端疯狂地向接收端发送很小的包,比如就1个字节,那么亲爱的小伙伴,你们觉得会有什么问题呢? ★ Nagle算法的基本定义是:任意时刻,最多只能有一个未被确认的小段。所谓“小段”,指的是小于MSS尺寸的数据块,所谓“未被确认”,是指一个数据块发送出去后,没有收到对方发送的ACK确认该数据已收到。 Nagle算法的实现规则:
延迟确认如果接受方刚接收到发送方的数据包,在很短很短的时间内,又接收到第二个包。那么请问接收方是一个一个地回复好点,还是合并一起回复好呢? ★ 但是有些场景不能延迟确认,比如发现了乱序包、接收到了大于一个 frame 的报文,且需要调整窗口大小等。 一般情况下,Nagle算法和延迟确认不能一起使用,Nagle算法意味着延迟发,延迟确认意味着延迟接收,酱紫就会造成更大的延迟,会产生性能问题。 15. TCP的粘包和拆包TCP是面向流,没有界限的一串数据。TCP底层并不了解上层业务数据的具体含义,它会根据TCP缓冲区的实际情况进行包的划分,所以在业务上认为,一个完整的包可能会被TCP拆分成多个包进行发送,也有可能把多个小的包封装成一个大的数据包发送,这就是所谓的TCP粘包和拆包问题。 为什么会产生粘包和拆包呢?
解决方案:
参考资料TCP 的那些事儿(下): https:///articles/11609.html [2]面试头条你需要懂的 TCP 拥塞控制原理: https://zhuanlan.zhihu.com/p/76023663 [3]30张图解:TCP 重传、滑动窗口、流量控制、拥塞控制发愁: https://zhuanlan.zhihu.com/p/133307545 [4]TCP协议灵魂之问,巩固你的网路底层基础: https:///post/6844904070889603085 [5]TCP粘包和拆包: https://blog.csdn.net/ailunlee/article/details/95944377 |
|
来自: 新用户16501297 > 《网络知识》