※.函数的定义域∵x-1≠0, ∴x≠1,即函数的定义域为: (-∞,1)∪(1,+∞) ※.函数的单调性∵y=(2x^3+208x^2)/(x-1)^2 ∴dy/dx =[(6x^2+416x)(x-1)^2-2(x-1)(2x^3+208x^2)]/(x-1)^4 =[(6x^2+416x)(x-1)-2(2x^3+208x^2)]/(x-1)^3 =[(6x^2+416x)(x-1)-2(2x^3+208x^2)]/(x-1)^3 =x(2x^2-6x-416)/(x-1)^3 =2(x^2-3x-208)/(x-1)^3
令dy/dx=0,则x1=0或x^2-3x-208=0. 当x^2-3x-208=0时,有: (x+13)(x-16)=0,即: x2=-13.x3=16. (1).当x∈(-∞,-13]∪[0,1)∪(1,16]时, dy/dx<0,此时函数y为减函数; (2).当x∈(-13,0)∪(16,+∞)时, dy/dx>0,此时函数y为增函数。
※.函数的凸凹性∵dy/dx=(2x^3-6x^2-416x)/(x-1)^3 ∴d^2y/dx^2 =[(6x^2-12x-416)(x-1)^3-3(2x^3-6x^2-416x)(x-1)^2]/(x-1)^6 =[(6x^2-12x-416)(x-1)-3(2x^3-6x^2-416x)]/(x-1)^4 =(844x+416)/(x-1)^4 =4(211x+2)/(x-1)^4 令d^2y/dx^2=0,则:
则:211x+2=0,即x=-104/211. (1).当x∈(-∞,-104/211)时,d^2y/dx^2<0, 此时函数y为凸函数; (2).当x∈(-104/211,1)∪(1,+∞)时, d^2y/dx^2>0,此时函数y为凹函数。
※.函数的极限lim(x→-∞)(2x^3+208x^2)/(x-1)^2=-∞ lim(x→1)(2x^3+208x^2)/(x-1)^2=+∞ lim(x→+∞)(2x^3+208x^2)/(x-1)^2=+∞
|