分享

y=(2x^3+208x^2)/(x-1)^2 单调性等性质

 葛山脚下 2021-09-08


.函数的定义域

∵x-1≠0,

∴x≠1,即函数的定义域为:

(-∞,1)∪(1,+∞)

.函数的单调性

∵y=(2x^3+208x^2)/(x-1)^2

∴dy/dx

=[(6x^2+416x)(x-1)^2-2(x-1)(2x^3+208x^2)]/(x-1)^4

=[(6x^2+416x)(x-1)-2(2x^3+208x^2)]/(x-1)^3

=[(6x^2+416x)(x-1)-2(2x^3+208x^2)]/(x-1)^3

=x(2x^2-6x-416)/(x-1)^3

=2(x^2-3x-208)/(x-1)^3


令dy/dx=0,则x1=0或x^2-3x-208=0.

当x^2-3x-208=0时,有:

(x+13)(x-16)=0,即:

x2=-13.x3=16.

(1).当x∈(-∞,-13]∪[0,1)∪(1,16]时,

dy/dx<0,此时函数y为减函数;

(2).当x∈(-13,0)∪(16,+∞)时,

dy/dx>0,此时函数y为增函数。


.函数的凸凹性

∵dy/dx=(2x^3-6x^2-416x)/(x-1)^3

∴d^2y/dx^2

=[(6x^2-12x-416)(x-1)^3-3(2x^3-6x^2-416x)(x-1)^2]/(x-1)^6

=[(6x^2-12x-416)(x-1)-3(2x^3-6x^2-416x)]/(x-1)^4

=(844x+416)/(x-1)^4

=4(211x+2)/(x-1)^4

d^2y/dx^2=0,则:

则:211x+2=0,即x=-104/211.

(1).当x∈(-∞,-104/211)时,d^2y/dx^2<0,

此时函数y为凸函数;

(2).当x∈(-104/211,1)∪(1,+∞)时,

d^2y/dx^2>0,此时函数y为凹函数。


※.函数的极限

lim(x→-∞)(2x^3+208x^2)/(x-1)^2=-∞

lim(x→1)(2x^3+208x^2)/(x-1)^2=+∞

lim(x→+∞)(2x^3+208x^2)/(x-1)^2=+∞

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多