专家表明: 生命早期1000天对孩子的大脑发育和未来健康至关重要。 大脑是一个复杂而独特的器官,在人的一生中不断发展和进化。生命早期几年里——从受孕到出生前两年,大脑会经历最大变化。2 虽然大脑发育是个漫长的过程,会一直持续到成年,但它在生命早期1000天里会以最快速度生长。16大脑的不同部分和认知功能在特定的时间发展,这段期间,大脑特别容易受到周围环境的刺激。在大脑快速发育阶段,次优营养、营养不良或外部因素造成的损害将对孩子的一生产生不可逆的严重后果。2、16、17 HMOs是人类母乳中重要的生物活性成分,对大脑有积极影响。 过去几十年的研究表明,母乳喂养的婴儿在某些方面的认知发展要优先于喝配方奶长大的婴儿。5、6 2020年,Al-Khafaji等人发表的一篇综述评估了HMOs对人体肠-脑轴的潜在影响,并指出母乳喂养有助于孩子认知发展的部分原因可能是由于母乳中的HMOs,1而母乳中的HMOs和认知发展之间的潜在联系也在其他文献中得以支持。3、4 ■ 近期研究表明,HMOs在婴儿配方奶粉中的含有量非常有限,这一点也正是区别于母乳中HMOs成分的关键。因此,为什么母乳喂养的婴儿会更健康也许便可得到解释。7、8 HMOs是母乳中第三大固体成分,尽管牛奶中也含有低聚糖,但母乳中的低聚糖含量更丰富,结构也更多样。9 HMOs的功能与它们本身的结构和母乳中的高含量有关,而某些HMOs对大脑健康的潜在影响可能取决于自身结构和数量。1 ■ 来自临床前模型和一项婴儿观察性研究的新数据表明,HMOs在大脑发育和认知方面具重要作用,10-15一些临床前数据则表明HOMs对大脑的影响可能受肠道微生物群的影响,而这也正说明了肠-脑轴的功能。 HMOs在大脑发育和健康中起什么作用? 最近的研究表明,某些HMOs可能对大脑发育和健康产生直接或间接影响。 ■ 2’FL是目前国外市场上的婴儿配方奶粉中最常添加的HMOs,临床前研究显示其在大脑健康和功能方面有潜在的积极作用。11、31 ■ 基于临床前和观察性研究,唾液酸化作用后的HMOs,包括最常用于研究的3’SL 和6’SL,有可能影响大脑健康。3、12、13、32、33 HMOs如何有益于大脑发育和健康?所有HMOs影响大脑的方式都类似吗? 随着这一领域的科学不断发展,HMOs影响大脑健康的确切路径得以逐渐清晰。每一个HMOs含有独特的特性,因此我们可以推测不同的HMOs对大脑健康的影响也会有所差异。 ■ 一项观察性研究发现,相比配方奶喂养的婴儿,母乳喂养的婴儿脑组织中唾液酸的含量更高。33 ■ 此外,一项临床前研究表明,与对照组相比,喂食含唾液酸的HMOs的动物脑组织中唾液酸含量更高,12这意味着唾液酸化作用后的HMOs是大脑发育的重要组成部分。 岩藻糖基化的HMOs也可能影响大脑发育,因为它们被肠道菌群分解代谢成短链脂肪酸,这是间接影响大脑健康的代谢产物。1、34、35 Berger等人将生命早期摄入HMOs与认知发展联系起来: ■ 他们的一项关于婴儿的研究表明,一个月大的婴儿如果摄入母乳中高浓度的岩藻糖基化的HMOs 2’FL,那么婴儿在2岁时的认知发育将得以改善。 ■ 动物临床前研究也发现,喂食岩藻糖基化的HMOs的动物,它们的记忆和认知受到正向影响,学习效率和长时程增强作用(long term potentiation)得以改善。4、10、11这些研究均表明HMOs在大脑健康和发育方面发挥重要作用。 若需了解更多产品信息或申请样本,请点击文末阅读原文,至微官网查询。 帝斯曼深知,生命早期1000天对于孩子成长具有重要意义,并可为终生健康安乐奠定基础。我们致力于为客户在产品发展的各阶段提供高质量的、以洞察力驱动的、创新的营养解决方案。下一代HMOs是我们振奋人心的创新环节的一部分,今年我们将有4种新的HMOs供行业进行创新试验,紧跟处于快速增长中的HMO市场。期待成为您的合作伙伴。 向上滑动阅览参考文献 1. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147-1162. 2. Saavedra JM, Dattilo AM. Early development of intestinal microbiota: implications for future health. Gastroenterol Clin North Am. 2012;41(4):717-731. 3. Al-Khafaji AH, Jepsen SD, Christensen KR, Vigsnæs LK. The potential of human milk oligosaccharides to impact the microbiota-gut-brain axis through modulation of the gut microbiota. Journal of Functional Foods. 2020;74:104176. 4. Di Mauro A, Neu J, Riezzo G, et al. Gastrointestinal function development and microbiota. Ital J Pediatr. 2013;39:15. 5. Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491-502. 6. Cheng L, Akkerman R, Kong C, Walvoort MTC, de Vos P. More than sugar in the milk: human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects. Crit Rev Food Sci Nutr. 2020:1-17. 7. Salamone M, Di Nardo V. Effects of human milk oligosaccharides (HMOs) on gastrointestinal health. Front Biosci (Elite Ed). 2020;12:183-198. 8. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4-14. 9. Furness JB, Kunze WA, Clerc N. Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory organ: neural, endocrine, and immune responses. Am J Physiol. 1999;277(5):G922-928. 10. Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergology International. 2017;66(4):515-522. 11. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539-544. 12. Zhao Q, Elson CO. Adaptive immune education by gut microbiota antigens. Immunology. 2018;154(1):28-37. 13. Ni J, Friedman H, Boyd BC, et al. Early antibiotic exposure and development of asthma and allergic rhinitis in childhood. BMC Pediatr. 2019;19(1):225. 14. Canova C, Zabeo V, Pitter G, et al. Association of maternal education, early infections, and antibiotic use with celiac disease: a population-based birth cohort study in northeastern Italy. Am J Epidemiol. 2014;180(1):76-85. 15. Holscher HD, Davis SR, Tappenden KA. Human milk oligosaccharides influence maturation of human intestinal Caco-2Bbe and HT-29 cell lines. J Nutr. 2014;144(5):586-591. 16. Yu ZT, Nanthakumar NN, Newburg DS. The Human Milk Oligosaccharide 2'-Fucosyllactose Quenches Campylobacter jejuni-Induced Inflammation in Human Epithelial Cells HEp-2 and HT-29 and in Mouse Intestinal Mucosa. J Nutr. 2016;146(10):1980-1990. 17. Weichert S, Jennewein S, Hüfner E, et al. Bioengineered 2'-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res. 2013;33(10):831-838. 18. Azagra-Boronat I, Massot-Cladera M, Knipping K, et al. Oligosaccharides Modulate Rotavirus-Associated Dysbiosis and TLR Gene Expression in Neonatal Rats. Cells. 2019;8(8). 19. Hester SN DS. Individual and combined effects of nucleotides and human milk oligosaccharides on proliferation, apoptosis, and necrosis in a human fetal intestinal cell line. Food and Nutrition Sciences. 2012;3:1567-1576. 20. Stewart CJ, Ajami NJ, O'Brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583-588. 21. Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011;17(6):478-482. 22. Turroni F, Milani C, Duranti S, et al. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci. 2018;75(1):103-118. 23. Ruiz L, Delgado S, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol. 2017;8:2345. 24. Berger B, Porta N, Foata F, et al. Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics. mBio. 2020;11(2). 25. Ninonuevo MR, Park Y, Yin H, et al. A strategy for annotating the human milk glycome. J Agric Food Chem. 2006;54(20):7471-7480. 26. Urashima T, Taufik E, Fukuda K, Asakuma S. Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Biosci Biotechnol Biochem. 2013;77(3):455-466. 27. Azad MB, Robertson B, Atakora F, et al. Human Milk Oligosaccharide Concentrations Are Associated with Multiple Fixed and Modifiable Maternal Characteristics, Environmental Factors, and Feeding Practices. J Nutr. 2018;148(11):1733-1742. 28. Chaturvedi P, Warren CD, Altaye M, et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology. 2001;11(5):365-372. 29. Yu ZT, Chen C, Newburg DS. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology. 2013;23(11):1281-1292. 30. Bode L, Jantscher-Krenn E. Structure-function relationships of human milk oligosaccharides. Adv Nutr. 2012;3(3):383s-391s. 31. Goehring KC, Kennedy AD, Prieto PA, Buck RH. Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One. 2014;9(7):e101692. 32. Geuking MB, Köller Y, Rupp S, McCoy KD. The interplay between the gut microbiota and the immune system. Gut Microbes. 2014;5(3):411-418. 33. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20(2):145-155. 34. Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer's disease. Sci Rep. 2017;7(1):13537. 35. Hopfner F, Künstner A, Müller SH, et al. Gut microbiota in Parkinson disease in a northern German cohort. Brain Res. 2017;1667:41-45. |
|
来自: mingxiaozi > 《现代医学》