分享

数字孪生模型评价指标体系

 灰太狼5gbpnaav 2022-01-24

章来源计算机集成制造系统编辑部, 仅用于学习交流。

数字孪生模型评价指标体系

张辰源,陶飞*

(北京航空航天大学 自动化科学与电气工程学院 数字孪生研究组,北京 100191)

摘要字孪生作为实现数字化、智能化、服务化等理念的重要使能技术,以及助力数字经济与实体经济融合发展的有效手段,受到各行各业的广泛关注。随着数字孪生逐渐从理论研究迈向落地实践,在实际应用对数字孪生模型的要求更加多元的同时,对数字孪生模型性能的透明度也提出了更高的要求。然而,数字孪生模型在构建校验、运行管理、重构优化、迁移复用、流通交付等阶段缺乏系统性评价理论和方法指导,难以分析和量化数字孪生模型的质量、性能、适用性或共生性、适应性和价值,导致难以分析和量化数字孪生模型的质量、性能、适用性、适应性和价值,严重阻碍数字孪生的深入推广应用针对上述问题,首先对不同阶段的数字孪生模型性能需求进行分析,在此基础上,提炼出8项数字孪生模型评价准则,进而构建了一套数字孪生模型评价指标体系,并给出了29项评价指标的量化计算参考方法,以期为数字孪生模型各阶段的决策过程提供参考。

关键词:数字孪生;数字孪生模型;评价指标体系;量化评价

文章来源张辰源, 陶飞*. 数字孪生模型评价指标体系[J]. 计算机集成制造系统, 2021, 27(8):2171-2186. DOI:10.13196/j.cims.2021.08.001

项目支持:(国家重点研发计划)基于数字孪生的生产线精确建模理论与方法(2020YFB1708400)

图片

图片

数字孪生[1]是由物理实体、虚拟模型、孪生数据、服务和连接5个维度构成的综合体[2,3],可以通过多维虚拟模型和孪生融合数据双驱动及虚实闭环交互机制,实现监测[4]、仿真[5]、评估[6]、预测[7]、优化[8]、控制[9]等功能服务和虚实共生交互机制[10],从而在单元级、系统级和复杂系统级多个层次的工程应用中监控物理世界的变化,模拟物理世界的行为,评估物理世界的状态,预测物理世界的未来趋势,优化物理世界的性能,并控制物理世界运行[11]。目前,数字孪生技术作为实现信息物理深度融合的有效手段[12],以及助力物理实体运行实时管控优化的可行方法[13],被学术界高度重视和研究,并已推广应用于航空航天、汽车制造、轨道交通、船舶航运、城市管理、电力、医疗、油气、农业等多个领域,形成了数字孪生卫星[14]、数字孪生车间[11]、数字孪生医疗[15]、数字孪生城市[16]等一批具有发展活力和韧性的新业态[17,18]。
数字孪生模型指数字孪生五维模型中的虚拟模型[2],又称数字孪生体,其通过精准描述物理实体的几何、物理、行为、规则等多维度属性[3],在物理实体运行数据的实时驱动下,对物理实体的实际行为和运行状态进行真实刻画,并基于既定规律和相关规则,输出物理实体的仿真运行数据,从而在缺少物理实体后续运行数据的驱动时,通过模型和数据迭代运行的方式,仿真推演物理实体未来的运行状态和行为特征趋势,进而实现对物理实体的预测、评估、优化等重要服务[19]。数字孪生模型作为数字孪生技术体系的核心基本要素[20],被国内外诸多专家学者和各领域企业机构广泛关注和深入研究,目前已有面向产品[21]、零部件[22]、工具[23]、工业机器人[24]、数控机床[25]、风力涡轮机[26]、人体[27]等物理实体的单元级数字孪生模型,以及面向生产线[28]、制造车间[29]、制造系统[30]、物流系统[31]、城市[16]等由多类物理实体组成的复杂系统数字孪生模型的相关研究。另外,笔者团队还针对如何构建数字孪生模型的问题,提出一套通用的数字孪生模型构建准则与构建理论[2]。
然而,纵观数字孪生模型近年来的理论研究与应用实践,发现存在以下不足和需求
(1)在数字孪生模型构建与校验过程中,因缺乏数字孪生模型质量评价方法,导致难以全面、客观地判断所建数字孪生模型能否满足有效性、直观性、整体性等建模需求,易产生数字孪生模型不可用或不符合建模需求的问题。
(2)在数字孪生模型运行管理阶段,因缺乏数字孪生模型性能评价方法,导致使用者不知数字孪生模型的有效性、高效性、智能性等可以满足何种程度的应用需求,使基于数字孪生模型的预测、优化、控制等功能服务无法稳定达到预期效果,且无法准确定位问题根源。
(3)当数字孪生模型由于新的业务需求需要进行重构和优化时,因缺乏数字孪生模型适用性和共生性评价方法,导致操作者不知如何针对数字孪生模型适用性和共生性不足的部分进行重构和优化,甚至无法判断数字孪生模型的灵活性能否有效支持重构和优化过程,导致重构和优化效率低、效果差。
(4)当数字孪生模型需要从当前的应用环境迁移到另一个相似的环境进行复用时,缺乏数字孪生模型适应性评价方法,导致无法准确判断已有数字孪生模型的通用性、灵活性和连通性能否满足迁移复用的需求,使数字孪生模型在复用后易发生失效或产生异常。
(5)在数字孪生模型作为资源或产品进行流通交付时,缺乏数字孪生模型价值评价方法,导致不知如何以有效性、通用性、高效性等性能指标作为评价准则衡量数字孪生模型的价值,使数字孪生模型“有市无价”,严重阻碍了企业和相关机构对数字孪生模型的大规模使用。
上述问题可归结为缺少数字孪生模型评价指标体系和评价方法,即在数字孪生模型的构建校验、运行管理、重构优化、迁移复用、流通交付等环节中,缺少系统性衡量数字孪生模型的质量、性能、适用性或共生性、适应性和价值的方法,由该问题进一步引发的数字孪生模型质量不透明、性能分布不明确、重构优化盲目性强、迁移复用易失效、“有市无价”等衍生问题,严重阻碍了数字孪生技术的深度推广与应用。因此,本文提出数字孪生模型评价指标体系,以期为解决上述问题提供系统性理论和具有可操作性的通用方法参考。

图片

针对当前数字孪生研究和实践应用过程中缺少数字孪生模型评价指标体系的问题,本文参考笔者团队[2]前期提出的数字孪生模型“四化四可八用”构建准则,面向由几何模型、物理模型、行为模型和规则模型组成的数字孪生模型,在全面深入分析数字孪生模型性能需求的基础上,有效性、通用性、高效性、直观性、连通性、整体性、灵活性、智能性8个方面研究建立了一套数字孪生模型评价准则,为构建数字孪生模型评价指标体系提供参考,进而指导数字孪生模型在构建校验、运行管理、重构优化、迁移复用、流通交付等环节中的相关决策过程,如图1所示。

图片

图1 数字孪生模型评价指标体系框架

2.1 有效性

数字孪生模型主要用于在物理实体运行过程中逼真、精准地刻画其状态和行为,并以此为基础支持对物理实体的实时监控、在线仿真、超前预测和决策优化等服务。为使数字孪生模型能够作为物理实体的忠实镜像在信息空间发挥等效功能,进而保证上述服务可信、可用,需要保证数字孪生模型的有效性。数字孪生模型的有效性将从以下4个方面衡量:

(1)数字孪生模型静态参数精准性

数字孪生模型静态参数包括物理实体的编号、型号、购入价格等基本信息,精准的数字孪生模型静态参数是对数字孪生模型进行准确分类、检索、匹配、定位等操作的基础。

(2)数字孪生模型动态参数精准性

数字孪生模型动态参数包含物理实体的状态数据、能力数据、位姿数据等实时运行信息,精准的数字孪生模型动态参数是实现数字孪生模型真实复现物理实体状态和行为的基础。

(3)数字孪生模型参数关联关系精准性

数字孪生模型参数关联关系包含物理实体运行相关的概念和知识,精准的数字孪生模型参数关联关系是实现有效的数据分析、推演仿真、预测评估、决策优化等服务的基础。例如,机械震动幅度与机械磨损速度两个参数间精准的关联关系能够有效支持机械磨损程度预测服务。

(4)数字孪生模型与物理实体共生程度

仅针对物理实体的部分属性和关系进行精准描述尚不能满足数字孪生模型的应用需求。有效的数字孪生模型还应具备物理实体与数字孪生模型共生的机制,即数字孪生模型在全面、动态、逼真地刻画物理实体的同时,还能够在设计、制造、运行等全生命周期各阶段反作用于物理实体,对其性能和行为产生影响。

2.2 通用性

近年来,数字孪生技术受到国内外企业、机构的广泛关注和高度认同,已有不少企业和机构开始实践数字孪生。构建数字孪生模型是实践数字孪生过程中无法回避的重要一环,构建高性能、高质量的数字孪生模型,通常需要耗费大量人力物力财力。为了使同类型物理实体的数字孪生模型能够在不同的应用场景中被迁移复用,避免因重复建模导致资源浪费和成本增加,同时减少异构模型的产生,降低异构模型的管理难度,需要尽量提高数字孪生模型的通用性。其中,数字孪生模型的通用性从以下4个方面进行衡量:

(1)数字孪生模型格式标准化程度

数字孪生模型是由几何模型、物理模型、行为模型、规则模型等多维度子模型组成的融合模型,这些子模型可以是点云、多边形、公式、文本、树状图、拓扑网络、本体、图谱等不同的呈现形式,但无论何种呈现形式,高度标准化的模型格式都有利于模型的解析、兼容复用以及再开发。

(2)数字孪生模型参数量纲及单位标准化程度

数字孪生模型包含大量静态和动态参数。数字孪生模型参数量纲和单位标准化程度会对数字孪生模型参数解析的正确率和效率产生一定影响,进而间接影响数字孪生模型的通用性。

(3)数字孪生模型数据接口标准化程度

数字孪生模型在运行过程中需要与其他模型、物理实体和服务进行实时交互(即实时的数据交换),还需要基于数据接口进行组装和融合,高度标准化的数字孪生模型数据接口有利于数据交互连接,并能有效支持与其他数字孪生模型的组装操作,间接提高数字孪生模型的通用性。

(4)数字孪生模型描述标准化程度

为了保证数字孪生模型能够被开发人员和使用人员快速理解,通常采用注释描述数字孪生模型的性能、使用方法、注意事项等。标准化的描述能够使不同技术人员更好地理解数字孪生模型,提高数字孪生模型的复用效率。

2.3 高效性

在数字孪生模型的运行阶段,模型参数需要根据物理实体的运行数据进行实时更新,从而可以实时复刻物理实体的状态和行为。同时,基于数字孪生模型的数据分析、仿真预测、决策优化等部分服务具有较强的时效性需求,要求数字孪生模型不能过于复杂。为减轻数字孪生模型在应用过程中对数据传输能力和算力的依赖,降低数据处理设备的设施建设和使用成本,需要对数字孪生模型进行轻量化处理,以提升其高效性。数字孪生模型的高效性从以下5个方面进行衡量:

(1)几何模型高效性

几何模型主要用于描述物理实体的形状、尺寸、位置等信息,支持物理实体的运行过程可视化、碰撞避免、结构分析、装配/拆卸关系分析等服务,轻量高效的几何模型能够有效减轻图像渲染的负担,提高上述服务的时效性。

(2)物理模型高效性

物理模型主要用于支持物理实体的物理属性分析和预测等服务,并为规则模型提供数字孪生模型内部参数的部分关联关系,高效的物理模型能够有效减轻仿真运算的负担,提高上述服务的时效性。

(3)行为模型高效性

行为模型主要描述物理实体在运行过程中的操作行为、随机行为、演化行为等,为基于数字孪生模型的仿真推演提供支持,简洁高效的行为模型能够在一定程度上提高仿真推演和预测等服务的执行效率。

(4)规则模型高效性

规则模型主要描述物理实体的运行逻辑、参数演化规律,以及参数间的约束关系、推理关系、支配关系等关联关系,包括与物理实体相关的标准、规范和准则,轻量高效的规则模型对于提高数据处理、知识挖掘、预测优化等服务的执行效率具有重要意义。

(5)数字孪生模型的并行运行能力

数字孪生模型一般包括几何模型、物理模型、行为模型、规则模型等多维度子模型,同时基于数字孪生的系统工程中通常会使用多个数字孪生模型,为了使各模型能够及时发挥各自的功能以满足实时系统正常运行的需求,数字孪生模型需要具备并行运行的能力。

2.4 直观性

数字孪生模型的构建、运维、优化、迁移、流通等环节需要相关人员深度参与,而人很难快速理解和分析模型文件,为了提高相关人员的工作效率和决策质量,需要使数字孪生模型具有一定的直观性。数字孪生模型的直观性从以下4个方面进行衡量:

(1)数字孪生模型参数直观性

可视化的数字孪生模型参数,能够帮助相关人员及时、全面地掌握物理实体的多维度属性和运行状态,从而更好、更快地进行决策。例如,在物理实体运行过程中,监控者能够基于直观的数字孪生模型参数发现物理实体的异常运行数据,进而分配维修人员及时对物理实体进行预防性维修。

(2)数字孪生模型结构直观性

可视化的数字孪生模型结构,能够帮助相关人员深入理解数字孪生多维度子模型间的耦合关系,及其各参数间的关联关系,从而加快相关人员对物理实体及其数字孪生模型的理解和认知。

(3)数字孪生模型运行过程直观性

可视化的数字孪生模型运行过程,能够帮助相关人员通过远程监控的方式掌握物理实体的全局运行状态和过程细节,从而提高相关人员的工作效率和决策质量。例如,指挥者可以基于直观的物流系统数字孪生模型运行过程,及时发现物流堵塞点并掌握其拥堵程度,进而通过调度物流系统及时疏通堵塞点。

(4)数字孪生模型演化过程直观性

数字孪生模型演化过程,即基于物理实体某一时刻相关数据的仿真过程。直观的数字孪生模型演化过程不仅能够预测物理实体在未来一段时间可能到达的状态,还能了解数字孪生模型包含的各种规律的演变过程。

2.5 连通性

数字孪生是实现信息物理融合的有效手段,而实现信息物理融合的前提是连通物理空间和信息空间,并消除信息空间内的数据孤岛。因此,需要确保数字孪生模型的连通性,即保证数字孪生模型与数字孪生模型、物理实体和相应服务能够通过数据交换的方式实时互访。数字孪生模型的连通性从以下4个方面进行衡量:

(1)数字孪生模型与物理实体的连通程度

数字孪生模型的参数需要根据物理实体的运行状态进行动态更新,实现对物理实体的实时复刻,同时物理实体也需要根据数字孪生模型的仿真结果接受最优的同步控制,而连通数字孪生模型与物理实体是实现上述实体-模型闭环迭代优化过程的基本前提。

(2)数字孪生模型与数字孪生模型的连通程度

由多个数字孪生模型表征的多个物理实体之间可能存在协同、竞争、约束等关联关系,为了使多个物理实体能够协同运行,需要确保数字孪生模型具备与其他数字孪生模型交互的能力,以实现多模型之间信息的共享与同步。

(3)数字孪生模型与服务的连通程度

基于数字孪生模型的功能和服务需要通过分析处理最新的数字孪生模型数据来保证其自身的时效性,同时部分服务还可对数字孪生模型进行配置、修正、优化等操作。因此,要求数字孪生模型能够与相应的服务有效连通,即数字孪生模型需要具备及时与服务进行数据交互的能力。

(4)数字孪生模型与孪生数据的连通程度

孪生数据包括物理实体的基本信息数据、运行数据、历史数据,以及数字孪生模型和相关服务运行所生成的数据。为了使数字孪生模型能够基于上述各种数据实现运行状态监测、历史问题追溯、仿真预测分析等多时间尺度服务,要求数字孪生模型与孪生数据能够有效连通。

2.6 整体性

数字孪生模型包括物理实体的几何、物理、行为、规则等不同维度的数据与特征,不仅如此,在物理维度,还包括机械、电气、液压等不同领域的信息和知识。这些数据、信息和知识通常会使用异构模型进行分别表示。为了全面整合物理实体的多维度数据和特征,从而完整刻画物理实体,要求数字孪生模型具有整体性。数字孪生模型的整体性从以下3个方面进行衡量:

(1)数字孪生模型多维度数据融合程度

为了使数字孪生模型能够统一、完备地描述物理实体的外观、状态、行为、功能和相关知识,需要将分别独立构建的数字孪生多维度模型的数据进行融合,去除冗余数据、消除不一致数据、填充缺失数据,最终形成具有全面性和一致性的数字孪生模型数据。

(2)数字孪生模型多维度特征融合程度

数字孪生多维度子模型的数据量庞大,冗余信息较多,在数字孪生模型实际运行过程中,有时不会直接使用多维度子模型数据,而是使用由多维度子模型数据挖掘得到的多维度特征,为了使这些多维度特征能够统一、完备地提供物理实体的目标特征信息,需要对数字孪生模型多维度特征进行融合。

(3)基于数字孪生多维度子模型的决策融合程度

在数字孪生模型运行过程中,有些服务会单独依赖于数字孪生模型某一维度的子模型,而不同服务生成的决策方案可能存在重复和冲突,要求基于数字孪生多维度模型的决策能够有效融合,并输出统一的决策方案。

2.7 灵活性

数字孪生模型不仅能够刻画单个物理实体,还能应用于车间、城市、电力系统等复杂物理实体。然而,直接面向复杂物理实体构建数字孪生模型的难度较大,且不利于重构优化和迁移复用,一般采用解耦思想先模块化构建单一个体物理实体的数字孪生模型,然后通过模型组装和融合的方式构建复杂物理实体的数字孪生模型。在此过程中,为了拓展和裁剪模块化的数字孪生模型,并支持灵活组装和配置,数字孪生模型需要具有一定的灵活性。数字孪生模型的灵活性从以下3个方面进行衡量:

(1)数字孪生模型可配置性

不同的应用场景和不同的业务,对于同一物理实体的数字孪生模型可能存在不同的应用需求。因此,数字孪生模型应具备灵活的配置能力,即能够根据具体的应用需求设定模型的相关参数。

(2)数字孪生模型可组装性

为了基于现有数字孪生模型获得更多结构更复杂、功能更丰富的物理实体的数字孪生模型,数字孪生模型应具备与其他数字孪生模型组装的能力。

(3)数字孪生模型可伸缩性

以应用为导向构建物理实体的数字孪生模型,通常不会一次性建立完备的数字孪生模型,当已构建的数字孪生模型不能满足新的应用需求时,需要在已有数字孪生模型的基础上进行拓展;当业务需求发生转变时,数字孪生模型原有的某些结构、内容和功能可能成为冗余,需要进行相应裁剪以提高模型的运行效率。

2.8 智能性

构建物理实体的数字孪生模型,并与物理实体交互迭代运行,其中一个重要目标是基于数字孪生模型对物理实体进行分析和预测,根据实时环境和业务需求自动生成相应的决策方案,从而实现物理实体的智能运维和管控优化。以此为目的,数字孪生模型需要具有一定的智能性。数字孪生模型的智能性从以下3个方面进行衡量:

(1)数字孪生模型自适应性

数字孪生模型的运行环境可能存在一些不确定因素,这些不确定因素将从一定程度上影响基于数字孪生模型的服务质量。智能的数字孪生模型应具备针对不确定因素的自适应能力,从而提高使用数字孪生模型的系统的鲁棒性和容错能力。

(2)数字孪生模型自治性

具有一定程度智能化的数字孪生模型应该能够理解自身功能以及当前的运行环境和业务需求,从而在合适的时间结合运行环境特征面向业务需求提供相应的服务,即实现自治运行。

(3)数字孪生模型自学习能力

物理实体在运行过程中,其几何模型、物理模型、行为模型和规则模型会发生不同程度的变化,在通过参数更新和参数关联关系更新来保证数字孪生模型有效性的基础上,如何通过发现、理解和应用各维度子模型潜藏的演化规律与相关知识,使数字孪生模型进行自主进化,对提高数字孪生的智能性具有重要意义。

图片

为弥补数字孪生模型评价指标体系的理论空白,本章基于所提出的有效性、通用性、高效性、直观性、连通性、整体性、灵活性、智能性数字孪生模型评价准则,在遵循评价指标体系的科学性、通用性、可比-可操作-可量化、针对性构建原则的前提下,构建数字孪生模型评价指标体系,为合理评价数字孪生模型的质量、性能、适用性或共生性、适应性和价值提供系统性理论支持,为数字孪生模型在构建校验、运行管理、重构优化、迁移复用、流通交付等环节的相关决策活动提供参考。

3.1 数字孪生模型评价指标体系构建原则

为保证数字孪生模型评价指标体系能够根据业务需求和用户偏好,全面、客观、科学、有效地评价各个领域物理实体的数字孪生模型,数字孪生模型评价指标体系构建过程应遵循以下原则:

(1)科学性原则

客观、科学、有效地评估数字孪生模型的质量、性能、适用性或共生性、适应性与价值,是构建数字孪生模型评价指标体系的核心,为此需要在构建数字孪生模型评价指标体系的过程中遵循科学性原则,客观分析数字孪生模型在所处各环节中的具体需求,并以此为主要依据设计数字孪生模型评价指标。在此过程中,需要注意区别于其他类型模型的评价指标,突出反映数字孪生模型应用特性的指标,避免将与数字孪生模型相关,但不能通过优化模型直接提升评价结果的问题抽象为评价指标,如交互实时性。

(2)通用性原则

数字孪生模型评价指标体系是一套适用于评估各领域数字孪生模型的系统性理论,在设计数字孪生模型评价指标时,应选取各领域数字孪生模型在应用过程中的共性需求作为设计评价指标的参考。

(3)可比-可操作-可量化原则

数字孪生模型评价指标需具备公正、可比、可量化的特点,应考虑用于计算指标数值的相关数据的可获得性,以及评价工作的可操作性。

(4)针对性原则

数字孪生模型的应用场景和业务需求并非一成不变,对于相同的数字孪生模型,根据不同的业务需求和用户偏好,最终获得的数字孪生模型评价结果也应有所区别。

3.2 数字孪生模型评价指标体系

遵循评价指标体系的科学性、通用性、可比-可操作-可量化原则、针对性构建原则,以客观、全面、有效地评价数字孪生模型的质量、性能、适用性或共生性、适应性与价值为目标,以数字孪生模型的有效性、通用性、高效性、直观性、连通性、整体性、灵活性、智能性为评价准则,以评价准则包含的各项细则为具体的评分指标,构建由1项总指标(目标层)、8项二级指标(准则层)、29项三级指标(指标层)组成的数字孪生模型评价指标体系,如图2所示。

图片

图2 数字孪生模型评价指标体系

3.3 数字孪生模型评价指标体系的相关术语定义

为帮助具有数字孪生模型评价需求的决策者深入理解数字孪生模型评价指标体系,并指导应用于不同领域的数字孪生模型评价的具体实践,下面对数字孪生模型评价指标体系中的部分术语和概念进行统一定义,如表1所示。

表1 数字孪生模型评价指标体系相关术语的定义

图片

图片

图片

4.1 数字孪生模型评价指标量化方法

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

4.2 数字孪生模型评价指标权重的确定方法

图片

图片

图片

图片

图片

图片

图片

数字孪生模型是反映物理实体当前状态和行为的载体,也是实现各种服务功能的基础。量化评价数字孪生模型的质量、性能、适用性或共生性、适应性和价值,对数字孪生模型在构建校验、运行管理、重构优化、迁移复用、流通交付等阶段的相关分析和决策过程具有重要参考价值。本文通过分析数字孪生模型各阶段的性能需求,归纳提炼出数字孪生模型评价准则,在此基础上研究提出通用的数字孪生模型评价指标体系,并给出各评价指标的量化计算参考方法。相关工作以期为数字孪生模型的进一步深入研究和规模化落地应用起到参考和推动作用。
本文研究仅对数字孪生模型的评价准则和评价指标进行了初步探讨,所提数字孪生模型评价指标还需进一步丰富和完善。文章内容难免有不足之处,恳请国内外专家和同行批评指正
致谢:本文研究得到国家重点研发计划项目“基于数字孪生的生产线精确建模理论与方法(2020YFB1708400)”的支持,感谢项目组成员对本研究提出的宝贵意见。本文相关研究工作得到华中科技大学李培根院士和清华大学范文慧教授以及数字孪生交流微信群中各位专家的指导和支持,感谢各位老师和专家对本研究提出的宝贵建议与意见。除所列作者外,北航数字孪生研究组其他成员也参与了本文的写作和讨论,在此一并表示感谢

参考文献:略,详见

张辰源, 陶飞*. 数字孪生模型评价指标体系[J]. 计算机集成制造系统, 2021, 27(8):2171-2186. DOI:10.13196/j.cims.2021.08.001

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多