分享

地质学报| 郭清海:岩浆热源型地热系统释义

 changyz001 2022-03-12
图片

摘要:以壳内岩浆囊(熔融体)为主要热源的地热系统是国内外地热界的热点研究对象。然而,当前尚无“岩浆热源型”地热系统的确切定义,对此类地热系统的认识也存在诸多争议。本文讨论了岩浆热源型地热系统的形成与其下熔融体的关系,阐释了“岩浆热源”的形成机制及其对上覆地热系统影响的本质,综述了利用岩浆流体地球化学组成识别其对地热水定量贡献的常用方法。在此基础上,提出“岩浆热源型”地热系统应指接受岩浆囊传导热且同时受到岩浆流体直接影响、从而热储温度异常高的地热系统。

作者简介:郭清海,男,1978年生。教授,博士生导师,主要从事高温地热系统地球化学方向研究。

引用本文:郭清海.2022.岩浆热源型地热系统释义[J].地质学报,96(1):208-214.

 关键词 |岩浆热源 地热系统 壳内岩浆囊 岩浆流体 地热水

共7326字 | 建议阅读时间10分钟

作者 | 郭清海

中国地质大学(武汉)生物地质与环境地质国家重点实验室

中国地质大学(武汉)环境学院

图片

郭清海教授

以岩浆为主要热源的地热系统具有重要的科学研究意义,且因其强大、稳定的热源,也具备远超出其他类型地热系统的开发利用价值。最直观的可与岩浆热密切相关的地热系统为现代火山区的高温水热系统,此类地热系统一般具有异常高的热储温度和类型多样的地表高温地热显示,且集中分布于板缘或热点。自20世纪70年代起,德裔新西兰学者Giggenbach(1975, 1978, 1980, 1981, 1984, 1988, 1992, 1997)系统研究了板缘火山区内岩浆脱气影响下的高温水热系统及其热储地球化学过程,为理解这类受到岩浆流体强烈影响的地热系统的形成机制奠定了理论基石。近年来,板内非热点地区也不乏高温地热系统的成功勘查案例,如中国青海共和盆地和山西阳高-天镇盆地;在解释其成热机制时,岩浆热源的可能存在同样被列为待考的备选答案之一(Zhang Chao et al., 2018; Yun Xiaorui et al., 2020)。在此背景下,“岩浆热源型地热系统”一词正被越来越多的国内外地热从业者和研究者使用。

如视地热系统为处于地球浅部的、其热能来自地球内部且在当前可供人类利用的地质体,从字面上理解,“岩浆热源”应指可充作地热系统主要热量来源的地下岩浆囊(熔融体)。这样,在不进行严格定义的前提下,所谓“岩浆热源型”地热系统大略指受到地下岩浆囊强烈影响的地热系统。然而,岩浆囊要满足何种条件才可成为其上地热系统的“主要”热量来源?地热系统所受下伏岩浆囊的影响要“强烈”到何种程度才意味着该系统是“岩浆热源型”地热系统?——地热界并无统一定论。此外,“岩浆热源”与已被广为认同且有明确定义的地热系统热源(地壳岩石中放射性元素生热、地核-地幔热、构造活动生成热)有何区别和联系?从形成过程及形成机制看,“岩浆热源”对“岩浆热源型”地热系统的影响的实质是什么?——诸如此类问题,当前也缺乏足够的讨论。鉴于上述情况,笔者试图在本文解析“岩浆热源”与“岩浆热源型”地热系统的关系,并对“岩浆热源型”地热系统进行定义,以期为此类地热系统的厘定和识别提供参考。

01

“岩浆热源型”地热系统和其下熔融体的关系

据上述对“岩浆热源型”地热系统的初步释义,若仅依据地热系统之下存在熔融体、在无视该熔融体深度的情况下即定义其为“岩浆热源型”地热系统,可能会导致对地热系统实质的错误判断。事实上,即便是典型的无附加热源的地热系统,也很可能接受来自岩浆的热贡献,其原因不言自明——地表任意位置所观测到的热流均包括地幔热流,而上地幔软流圈则普遍存在部分熔融现象。但在岩浆深埋于软流圈对应深度的情况下,地幔热流贡献的结果仅限于产生正常的大地热流背景,远不足以形成实际意义上的岩浆热源型地热系统,如在板缘和热点(或板内其他特殊区域)发育的、以近地表岩浆囊为附加热源的、热储温度远超过150℃的高温地热系统——此类地热系统的最大深部热储温度常达到250℃或更高,如环太平洋地热带的Los Humeros地热系统(墨西哥,330℃;Birkle et al., 2010)、大西洋中脊地热带的Reykjanes地热系统(冰岛,310℃;Saemundsson et al., 2020)、地中海-喜马拉雅地热带的腾冲热海地热系统(中国,323℃;Guo Qinghai et al., 2014)、红海-亚丁湾-东非大裂谷地热带的Olkaria地热系统(肯尼亚,340℃;Karingithi et al., 2010)、典型热点地区的Yellowstone地热系统(美国,270℃;Fournier et al., 1976)等,其下发育的岩浆囊的埋深一般仅几千米,空间规模则从直径几千米到几十千米不等(Bai et al., 1994, 2001; Husen et al., 2004; Zhao Ciping et al., 2006; Pierce et al., 2009; Smith et al., 2009)。这样,“岩浆热源型”地热系统的“岩浆热源”应具有较浅的埋藏深度,但目前地热界对何谓“较浅”尚无确切答案;换言之,当前尚无一个可用于界定“岩浆热源型”地热系统的岩浆囊临界深度(也不可能存在这样一个放之四海而皆准的、可用作判据的深度)。由此产生的难题是:对于某些在地表之下远小于软流圈深度处存在熔融体,但该熔融体埋深又明显大于板缘/热点典型高温地热区下岩浆囊深度(一般在10 km之内)的地热系统,应如何定义?例如,已开展的地球物理工作指示青海共和盆地之下存在埋深约15~35 km的熔融体(Gao Ji et al., 2018; Zhang Senqi et al., 2021),区内最高大地热流值也远超过全球大陆范围内平均值(Zhang et al., 2018),但共和盆地内的地热异常是否可视为“岩浆热源型”?——就是一个仅从熔融体深度入手难以给出确切答案的问题。

鉴于上述原因,提供新的思路以判断地热系统是否为“岩浆热源型”就显得尤为必要。一条有望推广的“岩浆热源型”地热系统的判断标准是:如地热系统下熔融体(岩浆囊)的深度足够小,从而使其受到自熔融体(岩浆囊)释出的岩浆流体的直接影响,该地热系统即可视为“岩浆热源型”地热系统。若以此标准来定义“岩浆热源型”地热系统,其异常高的热储温度一方面受控于岩浆囊的热传导,另一方面则来自于高温岩浆流体输入的直接贡献。就进入地热系统并与入渗成因水相混和的岩浆流体而言,其对地热系统的强烈影响则不仅在于显著提高了地热水的温度,更在于深刻影响了地热系统深部水文地球化学过程,且使地热水呈现迥异于非岩浆热源型地热水的地球化学特征(Guo Qinghai, 2020)。据此标准,地热系统之下存在侵位的岩浆当然并不意味着该系统一定是“岩浆热源型”地热系统:相对较深的侵位岩浆释出的岩浆流体固然难以进入其上地热系统;即便是埋深仅几千米的岩浆囊,受到其热传导影响的地热系统也可能因处在岩浆囊边缘上方而并不被岩浆流体混入而直接加热——此类地热系统的国内典型范例当属云南龙陵邦腊掌,该地热系统恰好处于一个埋深仅约4 km的浅部岩浆囊的边缘上方(Zhao Ciping et al., 2006),在此岩浆囊烘烤下,邦腊掌地热系统的热储温度也超过150℃(Guo Qinghai et al., 2017),但地球化学证据指示邦腊掌地热水并未受到岩浆流体的混合(Guo Qinghai et al., 2017)。总体来看,在不受到岩浆流体直接影响的情况下,难以在地表之下2~3 km以内形成热储温度超过250℃的水热型地热系统。因此,在此意义上,“岩浆热源型”地热系统应指接受岩浆囊传导热且同时受到岩浆流体直接影响、从而热储温度异常高的地热系统。

02

 “岩浆热源”的形成机制和本质

可充作地热系统热源的近地表岩浆囊存在不同的形成模式。发育于扩张型板块边界的岩浆热源型地热系统(如大西洋中脊地热带的地热系统)之下的岩浆囊常直接形成于岩石圈张裂继以地幔岩浆上涌;在聚敛型板块边界一带发育的、作为地热系统(如环太平洋地热带和地中海-喜马拉雅地热带的某些地热系统)热源的岩浆则虽可能发源于地幔,但一般受到地壳物质的大尺度混染,或者本就形成于地壳岩石重熔。板缘的强烈构造活动是导致地壳岩石重熔的重要因素之一,例如,不少学者认为藏南高原沿雅鲁藏布缝合带密集分布的高温水热系统即是印度板块和欧亚板块碰撞后壳内岩石重熔并加热深循环地下水的结果(Tong Wei et al., 1981, 1990; Zhang Zhifei et al., 1982; Brown et al., 1996; Nelson et al., 1996)。碰撞型板块活动过程中的剪切性构造运动可能对岩浆形成有关键作用(Devès et al., 2011)。相关研究表明,走滑断层低速率摩擦生热即可使断层面附近的岩石发生熔融(Dan et al., 1972);以此为参照,没有理由怀疑板缘大规模逆冲断层活动可产生足够的热量并导致地层局部熔融(Andrieux et al., 1977; Zhu Yuanqing et al., 1990)。仍以西藏南部为例:以印度板块和欧亚板块每年仅几厘米的平均汇聚速率而论,主中央逆冲断层剪切运动生热似乎不足以引起局部熔融,但其更快速的间歇性剪切运动则足以产生小规模的壳内岩浆囊——冈底斯一带出露的小型年轻花岗岩体即可作为直观的证据(Liao Zhijie et al., 1999)。

值得指出的是,强烈构造运动并非一定会导致壳内熔融体的形成,构造活动生热的结果更可能是仅使地壳岩石产生较高温度条件下的韧性变形,即所谓“地壳非均匀半固态-固态流变(Li Dewei, 2015)”——近年来的干热岩勘查工作常以此为热源标志,也有不少地热工作者视其为地热异常热源机制研究的理论基础之一(Luo Wenxing et al., 2020; Sun Mingxing et al., 2020; Zhang Baojian et al., 2020)。事实上,近地表的岩浆囊与发生韧性变形岩石在本质上均并非地热系统的最“原始”热源,它们自身即是局部地热异常的表现形式,且需要特定的热源条件得以形成。地热系统的最“原始”热源应仅包括地壳岩石中放射性元素生热、地核-地幔热、构造活动生成热——以上三者中,前两者在全球大陆范围内无处不在(壳幔热流分配理论即以此为基石),后者则仅在强烈构造活动区具备热源意义;而要在地表之下埋深较浅处形成岩浆囊或使岩石发生韧性变形,地幔岩浆上涌或强烈构造活动恰是所需要的地热地质条件。从这个角度看,所谓“岩浆热源型”地热系统并不是从热源类型上对地热系统的定义,而是对地热系统的地热异常强度的说明;“岩浆热源型”地热系统之下的近地表岩浆囊,本质上只是地热系统的间接热源。换言之,称一个地热系统为“岩浆热源型”地热系统,意味着在该地热系统之下较浅处存在岩浆囊,此岩浆囊可能直接源自上行的地幔岩浆,可能是因上行地幔岩浆引发的壳内岩石熔融,也可能因壳内构造活动/变形而形成,其热传导及其中岩浆流体的释放会对上覆地热系统造成极大影响,但它并不是地热系统的根本性的热源。在本质上,“岩浆热源型”地热系统和其下的岩浆囊是同一起地质事件(地幔岩浆上涌或强烈构造活动/构造变形)的两个不同(但有密切联系)的结果。

综上,广泛存在部分熔融的上地幔对地热系统的形成具有普遍的热源意义(即提供壳幔热流分配理论中的地幔热流),但如未发生地幔岩浆侵位或侵位程度不够,且在地表之下埋深较浅处不存在构造活动成因的岩浆,就不能形成真正意义上的岩浆热源型地热系统。然而,无论程度如何,地幔岩浆侵位均可视为改变地热分布规律(热分布)的重要因素。从改变地热分布规律的角度看,其他影响相对较小但不容忽视的因素还包括地下水循环、岩石/沉积物热物性差异、地形起伏等(Huang Shaopeng, 1998);上述因素中,地下水循环对地热分布的影响最为常见——正常大地热流背景下的近地表显著地热异常,常常就是地下水深循环的直接结果。因此,地热系统的热储温度受到其“原始”热源(地壳岩石放射性元素生热(普遍存在)、地核-地幔热(普遍存在)、构造活动生成热(存在于特定区域))和改变热分布的关键因素(地幔岩浆侵位、地下水循环、岩石/沉积物热物性差异、地形起伏等)的共同制约,所谓“地热形成机制研究”应包括对上述两类要素进行有效识别。

03

岩浆流体的地球化学组成及其对地热水的定量贡献

如前所述,岩浆热源型地热系统的关键特征为热储内陆热水受到自其下岩浆囊所释出的岩浆流体的直接影响;这样,岩浆流体地球化学组成及其对岩浆热源型地热水影响的评价就具有极其重要的研究意义。事实上,含大量强酸性气体的岩浆流体对岩浆热源型地热系统内的水文地球化学过程有巨大影响已被地学界广为认同,岩浆流体对地热水及其溶解组分的定量贡献也一直是地下水科学及相关学科最具挑战性的研究领域之一(White, 1986)。一言以蔽之,岩浆流体及其地球化学组成的研究对于判断成热机制不明的高温地热系统是否具备岩浆热源至关重要,是制定此类地热系统的勘查方略和开发利用方案的工作基础之一。然而,除含强酸性气体这一共同特点外,自不同类型岩浆中释出的岩浆流体理应并不具备一致的水化学和同位素组成,例如,从花岗质岩浆中释出的岩浆流体的地球化学特征必然不同于从玄武质岩浆中释出的岩浆流体;即便是同类型岩浆,如果发源于地质背景大异的不同区域,其释出的岩浆流体的地球化学组成也难免有所差别;此外,深源岩浆在上侵过程中将不断结晶分异,在其不同侵位深度所释出的岩浆流体的化学组成也自然相应持续演化。因此,对于特定的岩浆热源型地热系统,确定进入其热储的岩浆流体的地球化学组成对地热水地球化学起源研究及其开发利用具有重要价值;但岩浆流体地球化学组成的定量分析迄今为止仍是尚未解决的重大难题。由于技术条件的限制,目前尚无法采集到“原始”且“纯粹”的岩浆流体样品。利用流体包裹体进行岩浆流体的水文地球化学研究或D、18O等稳定同位素研究则同样存在困难。原因在于:岩浆热源型地热区内可获取的矿物中流体包裹体或流体-熔体包裹体的液相即使含有岩浆流体,也往往曾受到其他来源水(如入渗成因水)的混合,并非“纯粹”的岩浆流体;而且,可采集的含岩浆流体的单个包裹体样品中的水量一般非常少,就开展水的化学或同位素测试而言难度很大,对于某些样品量要求较高的同位素测试则完全不可能(Lu Huanzhang et al., 2004)。更重要的是,即便所获取的包裹体液相中岩浆流体的比例非常大,即受到后期混合过程的影响可忽略不计,该岩浆流体也仅是溶解在岩浆中的未饱和的流体或岩浆冷凝后保存在残余岩浆中的流体,并不能代表从岩浆中释出并进入地热系统内的流体,但对于研究地热水地球化学起源有意义的恰恰是正在从岩浆中释放并对地热水有直接贡献的这部分岩浆流体。同样道理,火山玻璃中所含流体也不能作为从岩浆中释出的流体的代表。事实上,在各类火山岩矿物和火山玻璃中,黑曜石是被封存且后期未受其他成因水混合的岩浆流体的最可能的载体;鉴于此,Taylor et al.(1983)选择美国西部喷发时间在2000 a以内的年轻流纹岩火山为研究区,系统采集了火山碎屑/火山灰以及熔岩流中的黑曜石样品,发现火山碎屑/火山灰中黑曜石样品的含水量显著高于熔岩流中的黑曜石样品,原因正是在熔岩流冷凝过程中,黑曜石中的岩浆流体有足够时间从中释出,而火山碎屑/火山灰则为火山喷出物快速冷却形成,其中岩浆流体来不及大量释出而相对较多地保留在了黑曜石中——以上两类黑曜石中的岩浆流体均是岩浆中封存的流体而非从其中释出并对地热系统产生深刻影响的“有效”岩浆流体。此外,在此研究中,来自火山碎屑/火山灰的黑曜石样品中的流体的δD值也明显高于来自熔岩流的黑曜石样品(Taylor et al., 1983),原因则是高温条件下的氢同位素分馏过程会导致D富集在释出的气相中(Truesdell et al., 1977),这样留在岩浆中的残余流体的氢同位素组成就偏轻。可以推测,在岩浆流体释出的过程中,其中所有化学组分都会在释出流体和岩浆中残余流体之间非均匀分配,从而使黑曜石中封存的流体在化学和同位素组成上完全不同于释出的岩浆流体。

在“直接”测定不可行的前提下,一些确定岩浆流体定量地球化学组成的间接方法应运而生。Taylor(1974)认为可基于同位素平衡计算在岩浆温度下与主要火成岩矿物共存的流体的氢氧同位素组成,并由此得出岩浆流体的δ18O值介于6‰~10‰之间,δD值介于-80‰~-50‰之间;但其后许多研究者(Stewart et al., 1975; Mizutani, 1978; Hedenquist et al., 1991; Giggenbach, 1992; Bolognesi et al., 1993; Shevenell et al, , 1993; Goff et al., 2000)都发现岩浆流体的氢同位素组成虽然变化范围很大,却均应比Taylor(1974)的结果偏重,原因同样为Taylor(1974)的研究对象是与岩浆共存的水,而非从岩浆中释出的水。Taylor(1992)也认为将Taylor(1974)的所谓“primary magmatic water(原始岩浆水)”称为“residual magmatic water(残余岩浆水)”更加合适。与前述研究不同,Goff et al. (2000)利用世界范围内11个活火山区喷汽孔的高温蒸汽样品间接确定了从岩浆中释出的流体的δ18O和δD值,但该研究的成功有赖于以下前提:① 对活火山区的浅埋岩浆热源型地热系统而言,岩浆流体在从喷汽孔逸出的高温蒸汽中所占比例相对较大,换言之,岩浆流体在上升并出露地表的过程中所受到的入渗成因水混合的影响相对较小;② 以上活火山区的岩浆流体和入渗成因水混合后产生的高温蒸汽从形成于地下到自喷汽孔逸出地表所需时间非常短,该过程中流体-岩石相互作用程度也不高(该研究中喷汽孔蒸汽冷凝水多为pH值非常低的酸性水且Na、K、Ca、Mg、Li等组分的含量很低即是明证),因而可认为所采集到的样品在地下几乎未因同围岩反应而发生氧同位素漂移;③ 在高温条件下的岩浆脱气过程中,氧同位素在岩浆和从其中释出的流体之间的分馏效应小于氧同位素分析的误差范围,可以忽略——这样,在此类活火山区可用最近喷发的火山岩的平均δ18O值来代替岩浆流体的δ18O值,进而可利用研究区喷气孔蒸汽冷凝水的δD-δ18O线性回归方程,根据岩浆流体的δ18O值求得其δD值。因此,该方法显然不能应用于深埋岩浆热源型地热系统。在深埋岩浆热源型地热系统,即使岩浆流体对深部热储内的地热水有非常可观的贡献,自热泉口或地热生产井口获取的中性或弱碱性地热水样品也均为岩浆流体和入渗成因水混合形成的初始酸性水在充分中性化且与围岩矿物达到完全化学平衡、而后再经历一定后期改造(包括不同方式的冷却和随之发生的不同程度的化学再平衡)后的产物。由于地热水中绝大多数水化学和同位素指标(包括δ18O值)受到了热储水-岩相互作用的强烈影响,通过地热水地球化学研究定量评价岩浆流体的地球化学特征极其困难。此类地热系统排泄的酸性热泉(本质上是深部地热流体分离出的地热蒸汽所加热的浅循环入渗成因水)与岩浆流体的联系则更加微弱,对岩浆流体地球化学组成的定量分辨更无意义。这样,在该研究方向,国内外并不多见的研究集中在通过地热水中的某些保守组分(如Cl)或保守同位素(如D)对岩浆流体在地热水中的比例进行推算(Gherardi et al., 2002; Pang Zhonghe, 2006; Dotsika et al., 2009; Guo Qinghai et al., 2010)。

04

结论

受到壳内岩浆强烈影响的地热系统具有重要的研究意义和开发利用价值,但何谓“岩浆热源型”地热系统长期以来一直缺乏深入的讨论和明确的结论。广义上,“岩浆热源”指可为地热系统提供热量来源的地下熔融体;狭义上,“岩浆热源”除可向上覆地热系统传导热量外,自其中释出的岩浆流体还应对地热系统产生直接影响。相应地,“岩浆热源型”地热系统应定义为接受岩浆囊传导热且同时受到岩浆流体直接影响、从而热储温度异常高的地热系统。

从形成机制看,作为“岩浆热源型”地热系统的热源的熔融体可能直接源自上涌的地幔岩浆(期间难免受到地壳物质混染),可能是地幔岩浆上涌引起的壳内岩石熔融,也可能受控于壳内强烈构造活动;因此,严格来说,所谓“岩浆热源”其实并非“岩浆热源型”地热系统的原始热源。“岩浆热源”与其上覆“岩浆热源型”地热系统具有共同的主要初始热量来源:或为壳幔热流分配理论中的地核-地幔热(需借助地幔岩浆上涌这一改变地下热分布的重要环节),或为构造活动生成热(相关构造活动需足够强烈)。无论如何,埋深足够浅且所释出岩浆流体可进入其上地热系统的壳内熔融体虽不是地热系统的“原始”热源,但仍是至关重要的间接热源。

在将岩浆流体可进入地热系统作为判断其是否为“岩浆热源型”地热系统的关键判据的前提下,研究岩浆流体的地球化学组成及其对地热水的贡献具有不言而喻的重要意义。然而,当前仅岩浆流体的氢氧同位素组成可通过间接方法确定(已见于文献的直接确定方法被证明并不可取),其他水化学和同位素特征则均未见公认有效的直接或间接确定方法。即便如此,基于地热水中的某些保守组分(如Cl)或保守同位素(如D),仍可对岩浆流体在地热水中的比例进行推算;也可利用地热水的总体水文地球化学特征,判断一个热储围岩为非碳酸盐岩的地热系统是否是岩浆热源型地热系统(Guo Qinghai, 2020)。但上述方法用于推算岩浆流体在地热水中比例时的可靠性尚待进一步评价,这些方法也不能用于判断岩浆热源型地热水中的某一种(或某几种)化学组分是否来自(或有多大比例来自)岩浆流体的贡献。

参考文献见《地质学报》原文

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多