分享

述评:先天性脊柱侧凸的病因诊断与治疗现状

 Zhaojunchao404 2022-05-09 发布于天津

摘要



先天性脊柱侧凸是由于胚胎时期体节发育异常导致的一种早发性脊柱侧凸,其畸形多严重且呈进展性,通常伴发其他系统的畸形(肾脏、心脏或椎管内畸形)。先天性脊柱侧凸病因尚不明确,目前认为可能为遗传因素与环境因素的共同作用。遗传因素方面,研究已发现单核苷酸多态性、基因拷贝数变异以及TBX6 基因突变为先天性脊柱侧凸的重要致病因素。环境因素方面,孕期缺氧、酒精摄入、维生素缺乏等可能与先天性脊柱侧凸的发病相关。对于先天性脊柱侧凸的诊断,X线、CT以及MRI是常用的影像学检查手段。除了影像学检查之外,基因学检测(包括全外显子组测序以及全基因组测序)也越来越多地被用于早期诊断并帮助判断畸形的预后。先天性脊柱侧凸的治疗包括保守治疗和手术治疗。先天性脊柱侧凸多呈进展性,随访观察是监测畸形进展预后的重要手段。系列石膏、支具以及牵引可用于治疗轻、中度先天性脊柱侧凸,而对于重度先天性脊柱侧凸,需要进行外科干预。在选择术式时,需要考虑患者的年龄、生长潜力、畸形所处位置以及类型,常用的术式包括骨骺阻滞、半椎体切除或者截骨短节段融合术、高级别截骨矫形融合术、非融合手术以及融合与非融合的混合技术。

关键词



先天性脊柱侧凸;病因学;早发性脊柱侧凸;保守治疗;手术治疗

【Abstract】 Congenital scoliosis (CS) is early-onset scoliosis caused by somitogenesis abnormality during the embryonic period. It is characterized by severe, rapidly progressing deformities, often accompanied with other organ malformations (e.g., renal, cardiac, or intraspinal defects). CS is caused by numerous factors, including genetic factors and environmental factors. The genetic etiology involves single nucleotide polymorphisms (SNPs), copy number variants (CNVs), and TBX6 genetic mutation. The environment etiology is reported to be associated with multiple maternal exposure factors during pregnancy, such as hypoxia, alcohol, and vitamin deficiency. For the diagnosis of CS, traditional testing methods include X-ray, CT and MRI. Furthermore, the whole exome sequencing (WES) and whole genome sequencing (WGS) are increasingly being used for early diagnosis and prediction. The treatment of CS includes conservative and surgical methods. Most of CS deformity is progressive, and observation is a necessary and effective method to monitor it. Serial casting, brace and traction may be effective in treating moderate or mild CS. For patients with progressive, severe and rigid CS, surgical intervention is mandatory. Surgical procedures, including epiphysiodesis, hemivertebra resection or osteotomy with short fusion, high grade osteotomy with fusion, growth friendly techniques and hybrid techniques of fusion and fusionless techniques, can be chosen according to patient's age and growth potential, the location and type of deformity.

【Key words】Congenital Scoliosis; Etiology; Early-onset Scoliosis; Conversative Treatment; Surgical Treatment


前言


先天性脊柱侧凸是早发性脊柱侧凸的一种常见类型,是由胚胎期脊柱发育异常所导致的一种常见的脊柱畸形。其病因尚不明确,发病早,在胚胎期或者出生后早期即可被发现,部分畸形严重,且呈进展性,除了导致脊柱侧后凸畸形之外,对患儿的胸廓以及肺的发育及功能影响大;其治疗需要综合考虑患者的年龄、生长潜力以及畸形的类型、进展潜力等。近年来,其病因学的研究以及治疗均有较大的进展。本文将就其病因学以及诊断研究与治疗现状进行介绍。


1.先天性脊柱侧凸的病因学研究

先天性脊柱侧凸(congenital scoliosis,CS)是胚胎时期脊椎发育异常引起脊柱生长不平衡所致的早发性脊柱侧凸,其特点为畸形重、进展快、常合并其他器官畸形(如肾脏、心脏或椎管内畸形)。先天性脊柱侧凸的临床分类包括脊椎形成障碍(Ⅰ型CS)、脊椎分节不全(Ⅱ型CS)或混合型(Ⅲ型CS)[1]

先天性脊柱侧凸通常为散发疾病,发生率为0.5‰~1‰[1],其病因至今尚未明确。一项对87个先天性脊柱侧凸和早发特发性脊柱侧凸的家系研究表明,脊柱侧凸在家系中复发的风险很低[2];在另一项对1250例先天性脊柱畸形患者的研究中,仅13例患者的一级或二级亲属有椎体发育缺陷[3]。因此,我们认为先天性脊柱侧凸可能是由多种因素引起的,包括遗传因素与环境因素。

1.1 遗传因素

在胚胎中,椎体发育受到如FGF、Wnt和Notch等各种信号通路的共同诱导调节[4]。其中,Notch通路中的部分基因,如MESP2、LFNG、HES7和JAG1,在正常的椎体发育与分节过程中起到关键调控作用,且上述基因的突变曾在先天性椎体畸形和脊柱侧凸相关疾病中被报道,如脊柱发育不良(spondylocostal dysostosis,SCD)[5-7]和Alagille综合征[8]。另外,基于单核苷酸多态性(single nucleotide polymorphisms,SNPs)的关联分析显示,部分候选基因(如PAX1、DLL3和TBX6)的SNPs与先天性脊柱侧凸的发生风险有关[9-12]。例如,对254例中国汉族受试者(127例先天性脊柱侧凸患者和127例健康对照)的基因分析发现,TBX6基因中的两个SNPs(rs2289292和rs3809624)与病情具有较高的相关性,提示TBX6可能在中国汉族人群先天性脊柱侧凸的发生与发展中扮演重要角色[13]

除候选基因的SNPs外,拷贝数变异(copy number variants,CNVs)也是先天性脊柱侧凸的一大遗传学病因。通过对167例先天性脊柱侧凸患者(161例汉族患者和6例其他民族患者)进行遗传学研究,我们发现12例受试者携带16号染色体短臂(16p11.2)缺失。在该缺失区段的所有基因中,TBX6作为调控体节发生的主要基因,被认为是先天性脊柱侧凸的驱动基因。此外,对患者TBX6测序发现的大量无效突变进一步证明TBX6基因与先天性脊柱侧凸的高度相关性。然而,上述提及的杂合的TBX6短臂缺失或无效突变,并不足以引起疾病发生,只有同时出现反式的TBX6的三种SNPs(rs2289292、rs3809624、rs3809627)之一,才会导致先天性脊柱侧凸的表型[14]

除TBX6相关的16p11.2缺失外,其他复发性CNVs如17p11.2缺失[15]、20p11缺失[16]和22q11.2缺失[17]也与先天性脊柱侧凸有关。然而,这些CNVs的驱动基因及其潜在的遗传修饰物仍需利用基因组学方法进一步研究。

1.2 环境因素

根据现有报道,已观察到妊娠期间多种母体暴露因素与先天性脊柱侧凸的发生有关,包括缺氧、酒精、维生素缺乏、抗惊厥药物(如丙戊酸)、高热、母体胰岛素依赖型糖尿病和妊娠期糖尿病等[18]。其中,大多学者认为缺氧是引起先天性脊柱侧凸的主要因素,在小鼠模型中缺氧条件可抑制胚胎脊椎软骨原基形成[19],进一步导致脊柱侧凸。


2.先天性脊柱侧凸的诊断

大多数先天性脊椎畸形都是在进行常规检查时偶然发现的。通常在胎儿发育20~28周就可以探知畸形情况,但只有四分之一的畸形在出生后第一年内即被诊断[20-22]。以先天性脊柱侧凸为例,作为一种进行性疾病,其进展性与患者年龄、畸形类型与侧凸发生位置等因素有关。当该病尚未影响到患者生活质量时,可能不易被发现诊断。因此,对疑似为先天性脊柱侧凸的患者,临床评估应从产前和出生时期的综合病史开始,且需考虑可能的并发综合征,进行彻底的临床与影像学检查,建立个体化的治疗策略。目前,诊断的主要方式为体格检查结合影像学检查。

随着测序技术的不断发展,基因检测也逐渐被应用于先天性脊柱侧凸的诊断中。我们对424例中国汉族先天性脊柱侧凸患者进行全外显子组测序,发现TBX6相关的先天性脊柱侧凸患者占9.7% (41/424) ,RYR1、MYH3等其他相关基因的致病突变患者占8.2% (35/424) ,CNV患者占0.9% (4/424) ,总诊断率高达18.6% (79/424)[23]。随着基因测序覆盖度与准确度的增加,联合应用CNV分析等方法,该病诊断率仍有望进一步上升。

目前来看,单纯地基于临床评估很难提供明确的先天性脊柱侧凸病因学分类依据或诊断方式,尤其是对于进展性不一或伴有其他合并症的复杂表型。从分子基础的角度探索,如结合全外显子组测序或全基因组测序进行辅助诊断,排查疑似致病基因,不仅可能发现新的相关基因或致病机制,而且有望将分子研究成果转化为临床指南、预测模型或精准疗法,从而为临床管理和产前筛查提供有价值的信息。


3.先天性脊柱侧凸的治疗

先天性脊柱侧凸表型多样,不同类型的先天性脊柱侧凸自然史以及预后均不同。在为先天性脊柱侧凸患者选择治疗方案时,需要充分考虑患者的年龄、生长潜力、畸形的类型以及预后等因素。总的来说,先天性脊柱侧凸的治疗方式分为保守治疗和手术治疗两大类。

3.1 保守治疗

对于畸形轻、进展风险低的先天性脊柱畸形,观察是主要的保守治疗手段。而对于畸形复杂、预后难以判断的患者,也可以进行随访观察。对于发现时侧凸已较重或观察过程中进展的先天性侧凸,可采用石膏或支具治疗来控制。近年来,有学者报道使用全身麻醉下系列石膏矫形治疗早发性脊柱侧凸取得较好的临床疗效[24],但是有关系列石膏矫形在早发先天性脊柱侧凸中的应用报道较少。Demirkiran等[25]报道对11例早发先天性脊柱侧凸患者使用系列石膏矫形进行治疗,平均矫形率为22%,10例患者矫正度数大于5°。Cao等[26]报道使用石膏矫形治疗早发性先天性脊柱侧凸患者,平均矫形率为20.5%,他们认为对于部分患者,石膏矫形可用于推迟手术治疗的年龄。全身麻醉下系列石膏的主要并发症为皮肤压伤、肺功能损害以及反复全身麻醉对患者发育的潜在影响等。支具很少用于先天性脊柱侧凸的治疗,其仅对少部分先天性侧凸畸形可能有效,但其机制多为对代偿畸形进行控制和矫正;也可用于接受系列石膏治疗患儿的残留畸形的治疗[27]。支具对于累及范围短的角状、僵硬畸形来说是无效的。

3.2 手术治疗

大多数先天性脊柱侧凸畸形呈进展性,需手术干预。目前用于治疗先天性脊柱侧凸的术式有很多种,选择时需要考虑患者的年龄、畸形的类型以及自然史。目前常用的主要的手术方式可以分为4类:融合手术、非融合手术、融合与非融合混合技术以及生长调节技术。

3.2.1 融合手术

包括原位融合术、半椎体切除短节段融合术以及对于复杂畸形的其他截骨矫形植骨融合术。

原位融合术是早期治疗脊柱畸形的手术方法,由于融合范围长、矫形率有限,目前已经很少采用。

半椎体畸形是最常见的先天性脊柱侧凸类型。其中非嵌合的完全分节的半椎体拥有完整的生长潜力,当其位于下胸段、胸腰段时,进展速度可达到每年2°~3.5°;当合并对侧分节障碍时,畸形年进展速度可达到7°~14°,需要早期进行手术干预[28]。半椎体切除术可以去除病因,早期通过短节段融合即可获得满意的矫形效果。半椎体切除术可通过分期或者一期前后路入路来完成,但前后路联合手术时间长、创伤大,尤其是前路经胸或胸腹入路,入路相关并发症风险高,目前已经较少采用[29-31]。随着后路节段性固定技术,尤其是婴幼儿椎弓根螺钉器械的出现和手术技术的发展,脊柱后路手术得以迅速发展。但椎弓根螺钉固定对椎管发育的影响一直是脊柱外科医师关注的焦点。我们团队[32]的研究显示,在婴幼儿中使用椎弓根螺钉会产生椎管形态的变化,但不会导致椎管狭窄。2002年,Ruf和Harms报道了使用后路一期半椎体治疗21例先天性脊柱侧凸患者,侧后凸畸形得到了良好的矫正[33]。后续多篇文献就后路一期半椎体切除术进行报道,侧凸矫正率为66.7%~86.1%,后凸矫正率为51.4%~85.9%[34-37]。后路一期半椎体切除主要的并发症为椎弓根螺钉的松动移位、一过性的神经根刺激以及在脊柱生长过程中出现失代偿等。为提高矢状面矫形以及降低内固定相关并发症风险,我们团队提出在胸腰段及腰段半椎体切除术中采用钛笼进行前柱的支撑重建,取得了良好的疗效,无一例内固定并发症发生[38]。半椎体切除术的长期随访结果报道尚不多见[39]

颈椎、颈胸段、腰骶段的半椎体有其独特的特点。颈椎半椎体、颈胸段半椎体会导致骨性斜颈及患者面部发育不对称,侧后方的半椎体可导致侧后凸畸形而导致神经功能受损,且可导致胸段节段性代偿畸形的出现,因此对该部位的半椎体畸形应当早期进行手术,Wang等[40]和Yu等[41]分别就颈胸段半椎体以及颈椎半椎体的外科治疗进行报道,疗效较好。而腰骶段的半椎体由于位于脊柱与骨盆的交界处,在导致原发畸形的同时,会导致近端腰椎出现明显的代偿畸形,出现躯干偏移以及腰痛等症状,影响患者功能,不及时的治疗往往会导致对结构性代偿腰弯的融合,严重影响患者功能。我们团队首次报道了对腰骶段半椎体的外科治疗,提出对该部位的半椎体,在早期手术时亦可通过充分的松解、短节段融合来获得良好的矫形,矫正原发畸形的同时,避免了对腰段代偿畸形的融合,保留了患者的功能[42]

对严重僵硬的先天性脊柱侧凸,若患者骨骼发育接近或者达到骨成熟,可考虑行截骨矫形融合术。而对于骨骼发育未成熟者,若畸形累及范围短,可在截骨术后使用短节段融合;若畸形累及范围长,可在截骨完成后采用短节段融合,术后配合支具或者联合生长棒等非融合技术来治疗[43,44]

3.2.2 非融合手术

对于骨骼发育未成熟、累及范围长的畸形,早期融合会导致短躯干以及胸廓发育不良综合征。对于此类患者需要采用非融合手术,获得畸形矫正的同时,保留脊柱侧的生长潜力,保障患儿胸廓以及肺的发育。这些技术包括传统生长棒技术、磁控生长棒技术(magnetically controlled growing rod,MCGR)、纵向可撑开人工钛肋(vertical expandable prosthetic titanium rib,VEPTR)、Shilla技术等,其中生长棒的应用最为广泛[45]

传统生长棒技术分为单棒技术和双棒技术。与单棒技术相比,双棒技术可以获得更好的矫形、更高的脊柱生长率,且并发症发生率更低。有关生长棒治疗早发性脊柱侧凸的疗效、并发症以及其他相关问题已有多中心研究报道,提示其在获得脊柱畸形矫正、控制的同时,在撑开治疗的过程中可获得脊柱持续增长,促进胸廓和肺的发育,避免胸廓发育不良综合征的出现[46-49]。在生长棒技术治疗早发性脊柱侧凸的文献中,主要为特发性、综合征性或者神经肌肉型脊柱侧凸,先天性脊柱侧凸的病例很少[50]。我们团队在2012年报道应用双生长棒技术治疗30例先天性脊柱侧凸的临床效果,发现双生长棒技术对早发先天性脊柱侧凸可取得与其他畸形相似的效果[51]

与传统生长棒相比,MCGR可减少麻醉和手术次数,获得相似的临床效果[52-54]。胸廓扩大成形术联合VEPTR技术治疗早发先天性脊柱侧凸,可增高患儿胸廓高度、增大胸腔容积、对脊柱畸形有一定矫正的同时保留了脊柱的生长潜力,但并发症的发生率较高,并可导致胸廓僵硬[55-57]

3.2.3 融合与非融合混合技术(hybrid technique)

在治疗累及范围长、严重的早发性先天性脊柱侧凸时,传统双生长棒面临一些挑战,包括主弯矫正率低、顶椎区残留畸形重、无法处理矢状面的后凸畸形、不对称生长力巨大易导致内固定失败等。针对这些问题,我们团队首次提出了截骨短节段融合联合双生长棒的混合技术,该技术主要适用于以下畸形:严重、僵硬畸形,顶椎偏距大且顶椎区存在巨大不对称生长潜力;伴有头侧或者尾侧长范围的结构性代偿弯的严重僵硬畸形;伴有短而锐的后凸的累及范围长的脊柱侧凸畸形。该术式可通过一期或者分期手术来完成。截骨术可大幅提高顶椎区的矫形,改善胸廓畸形以及肺容积,并可帮助消除巨大的不对称生长潜力,减少内固定物所承受的异常应力以及生长棒内固定相关并发症。除此之外,截骨水平上下的短节段融合可获得确切的生长阻滞,而对脊柱的生长能力影响很小。但由于需要脊柱截骨,手术难度较高,可能出现截骨相关的神经并发症。

我们首次报道了7例患者,平均初次手术年龄5.9岁,平均每例患者经历5.3次撑开术。冠状面主弯度数术前81.4°,术后30.1°,末次随访时41.0°。T1-S1年增长率为每年1.23 cm。术前SAL为0.87,术后改善至0.95,末次随访时为0.96,截止最近一次随访,无并发症发生[58]。此后有其他学者也就该混合技术进行了报道[59]

另外,Bekmez和Demirkiran报道了采用凸侧骨骺阻滞的方法部分消除顶椎区不对称生长潜力,之后使用生长棒对整体脊柱畸形进行控制。研究结果显示,采用这种融合与非融合技术在允许脊柱生长的同时获得对畸形的控制,但其初次手术矫形率低,内固定相关并发症风险仍然很高,在11例患者中8例发生内固定相关并发症[60,61]

3.2.4 生长调节技术

用于治疗先天性脊柱侧凸的生长调节技术主要为骨骺阻滞术。骨骺阻滞术是通过凸侧融合来抑制凸侧的生长而允许凹侧的继续生长以矫正畸形。可通过前后路凸侧骨骺阻滞来治疗先天性脊柱侧凸,也可通过单纯前路或后路骨骼阻滞来矫正先天性脊柱前凸或后凸。主要适用于年龄小于5岁、畸形较轻但进行性发展、畸形累及范围≤4个节段且凹侧具有充分的生长潜能。若适应证选择恰当,可获得比较好的治疗效果。


4 总结

先天性脊柱侧凸目前病因尚不明确,现有研究发现遗传因素和环境因素均在先天性脊柱侧凸畸形的发病过程中起到重要作用,且伴发其他系统畸形的概率高。基因检测对诊断、鉴别诊断、预后有重要意义。观察对于先天性脊柱侧凸进展的判断很重要。尽管系列石膏以及支具可帮助延缓手术时机,但大多数先天性脊柱侧凸畸形需要手术干预。手术方式和时机的选择需要综合考虑患者的年龄、畸形的部位类型、累及的范围和严重程度。


参考文献


[1] Hedequist D, Emans J. Congenital scoliosis: a review and update. J Pediatr Orthop, 2007, 27(1): 106-116.

[2] Connor JM, Conner AN, Connor RA, et al. Genetic aspects of early childhood scoliosis. Am J Med Genet, 1987, 27(2): 419-424.

[3] Winter RB. Congenital scoliosis. Orthop Clin North Am, 1988, 19(2): 395-408.

[4] Pourquie O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell, 2011, 145(5): 650-663.

[5] Sparrow DB, Chapman G, Wouters MA, et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet, 2006, 78(1): 28-37.

[6] Sparrow DB, Sillence D, Wouters MA, et al. Two novel missense mutations in HAIRY-AND-ENHANCER-OF-SPLIT-7 in a family with spondylocostal dysostosis. Eur J Hum Genet, 2010, 18(6): 674-679.

[7] Whittock NV, Sparrow DB, Wouters MA, et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am J Hum Genet, 2004, 74(6): 1249-1254.

[8] Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet, 1997, 16(3): 243-251.

[9] Erol B, Tracy MR, Dormans JP, et al. Congenital scoliosis and vertebral malformations: characterization of segmental defects for genetic analysis. J Pediatr Orthop, 2004, 4(6): 674-682.

[10] Fei Q, Wu Z, Wang H, et al. The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population. Spine (Phila Pa 1976), 2010, 35(9): 983-988.

[11] Giampietro PF, Raggio CL, Reynolds C, et al. DLL3 as a candidate gene for vertebral malformations. Am J Med Genet A, 2006, 140(22): 2447-2453.

[12] Giampietro PF, Raggio CL, Reynolds CE, et al. An analysis of PAX1 in the development of vertebral malformations. Clin Genet, 2005, 68(5): 448-453.

[13] Gillingham BL, Fan RA, Akbarnia BA. Early onset idiopathic scoliosis. J Am Acad Orthop Surg, 2006, 14(2): 101-112.

[14] Wu N, Ming X, Xiao J, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N Engl J Med, 2015, 372(4): 341-350.

[15] Li Z, Shen J, Liang J, et al. Congenital scoliosis in Smith-Magenis syndrome: a case report and review of the literature. Medicine (Baltimore), 2015, 94(17): e705.

[16] Williams PG, Wetherbee JJ, Rosenfeld JA, et al. 20p11 deletion in a female child with panhypopituitarism, cleft lip and palate, dysmorphic facial features, global developmental delay and seizure disorder. Am J Med Genet A, 2011, 155A(1): 186-191.

[17] Homans JF, de Reuver S, Heung T, et al. The role of 22q11.2 deletion syndrome in the relationship between congenital heart disease and scoliosis. Spine J, 2020, 20(6): 956-963.

[18] Giampietro PF, Blank RD, Raggio CL, et al. Congenital and idiopathic scoliosis: clinical and genetic aspects. Clin Med Res, 2003, 1(2): 125-136.

[19] Li Z, Yu X, Shen J. Environmental aspects of congenital scoliosis. Environ Sci Pollut Res Int, 2015, 22(8): 5751-5755.

[20] Louis ML, Gennari JM, Loundou AD, et al. Congenital scoliosis: a frontal plane evaluation of 251 operated patients 14 years old or older at follow-up. Orthop Traumatol Surg Res, 2010, 96(7): 741-747.

[21] McMaster MJ, Ohtsuka K. The natural history of congenital scoliosis. A study of two hundred and fifty-one patients. J Bone Joint Surg Am, 1982, 64(8): 1128-1147.

[22] Shahcheraghi GH, Hobbi MH. Patterns and progression in congenital scoliosis. J Pediatr Orthop, 1999, 19(6): 766-775.

[23] Zhao S, Zhang Y, Chen W, et al. Diagnostic yield and clinical impact of exome sequencing in early-onset scoliosis (EOS). J Med Genet, 2021, 58(1): 41-47.

[24] Waldron SR, Poe-Kochert C, Son-Hing JP, et al. Early onset scoliosis: the value of serial risser casts. J Pediatr Orthop, 2013, 33(8): 775-780.

[25] Demirkiran HG, Bekmez S, Celilov R, et al. Serial derotational casting in congenital scoliosis as a time-buying strategy. J Pediatr Orthop, 2015, 35(1): 43-49.

[26] Cao J, Zhang XJ, Sun N, et al. The therapeutic characteristics of serial casting on congenital scoliosis: a comparison with non-congenital cases from a single-center experience. J Orthop Surg Res, 2017, 12(1): 56.

[27] Kawakami K, Saito T, Tauchi R, et al. Nonanesthetized Alternatively Repetitive Cast and Brace Treatment for Early-onset Scoliosis. J Pediatr Orthop, 2020, 40(8): e720-e727.

[28] McMaster MJ. Spinal growth and congenital deformity of the spine. Spine (Phila Pa 1976), 2006, 31(20): 2284-2287.

[29] Lazar RD, Hall JE. Simultaneous anterior and posterior hemivertebra excision. Clin Orthop Relat Res, 1999, (364): 76-84.

[30] 孙武, 仉建国, 邱贵兴, 等. 前后路与后路半椎体切除术矫治先天性脊柱侧后凸的疗效分析. 中华医学杂志, 2012, (11): 756-759.

[31] 孙武, 仉建国, 邱贵兴, 等. 前后路一期半椎体切除术治疗先天性脊柱侧后凸的中期随访. 中华骨科杂志, 2009, (5): 436-440.

[32] Zhang Y, Peng Q, Wang S, et al. A pilot study of influence of pedicle screw instrumentation on immature vertebra: a minimal 5-year follow-up in children younger than 5 years. J Neurosurg Pediatr, 2019: 1-8.

[33] Ruf M, Harms J. Hemivertebra resection by a posterior approach: innovative operative technique and first results. Spine (Phila Pa 1976), 2002, 27(10): 1116-1123.

[34] Ruf M, Jensen R, Letko L, et al. Hemivertebra resection and osteotomies in congenital spine deformity. Spine (Phila Pa 1976), 2009, 34(17): 1791-1799.

[35] Wang S, Zhang J, Qiu G, et al. Posterior hemivertebra resection with bisegmental fusion for congenital scoliosis: more than 3 year outcomes and analysis of unanticipated surgeries. Eur Spine J, 2013, 22(2): 387-393.

[36] Zhang J, Shengru W, Qiu G, et al. The efficacy and complications of posterior hemivertebra resection. Eur Spine J, 2011, 20(10): 1692-1702.

[37] 王升儒, 仉建国, 李书纲, 等. 后路一期半椎体切除治疗先天性脊柱侧凸的疗效与并发症. 中国骨与关节外科, 2011, 4(6): 427-433.

[38] Wang S, Zhang J, Qiu G, et al. Posterior-only Hemivertebra Resection With Anterior Structural Reconstruction With Titanium Mesh Cage and Short Segmental Fusion for the Treatment of Congenital Scoliokyphosis: The Indications and Preliminary Results. Spine (Phila Pa 1976), 2017, 42(22): 1687-1692.

[39] Chang DG, Kim JH, Ha KY, et al. Posterior hemivertebra resection and short segment fusion with pedicle screw fixation for congenital scoliosis in children younger than 10 years: greater than 7-year follow-up. Spine (Phila Pa 1976), 2015, 40(8): E484-E491.

[40] Wang S, Lin G, Yang Y, et al. Outcomes of 360 degrees Osteotomy in the Cervicothoracic Spine (C7-T1) for Congenital Cervicothoracic Kyphoscoliosis in Children. J Bone Joint Surg Am, 2019, 101(15): 1357-1365.

[41] Yu M, Diao Y, Sun Y, et al. Evaluation of a combined approach to the correction of congenital cervical or cervicothoracic scoliosis. Spine J, 2019, 19(5): 803-815.

[42] Zhuang Q, Zhang J, Li S, et al. One-stage posterior-only lumbosacral hemivertebra resection with short segmental fusion: a more than 2-year follow-up. Eur Spine J, 2016, 25(5): 1567-1574.

[43] Chang DG, Yang JH, Lee JH, et al. Congenital scoliosis treated with posterior vertebral column resection in patients younger than 18 years: longer than 10-year follow-up. J Neurosurg Spine, 2016, 25(2): 225-233.

[44] Wang S, Aikenmu K, Zhang J, et al. The aim of this retrospective study is to evaluate the efficacy and safety of posterior-only vertebral column resection (PVCR) for the treatment of angular and isolated congenital kyphosis. Eur Spine J, 2017, 26(7): 1817-1825.

[45] Zhang YB, Zhang JG. Treatment of early-onset scoliosis: techniques, indications, and complications. Chin Med J (Engl), 2020, 133(3): 351-357.

[46] Akbarnia BA, Marks DS, Boachie-Adjei O, et al. Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine (Phila Pa 1976), 2005, 30(17 Suppl): S46-S57.

[47] Barrett KK, Lee C, Myung K, et al. The Effect of Growing Rod Treatment on Hemoglobin and Hematocrit Levels in Early-onset Scoliosis. J Pediatr Orthop, 2016, 36(6): 618-620.

[48] Bess S, Akbarnia BA, Thompson GH, et al. Complications of growing-rod treatment for early-onset scoliosis: analysis of one hundred and forty patients. J Bone Joint Surg Am, 2010, 92(15): 2533-2543.

[49] Johnston CE, Tran DP, McClung A. Functional and Radiographic Outcomes Following Growth-Sparing Management of Early-Onset Scoliosis. J Bone Joint Surg Am, 2017, 99(12): 1036-1042.

[50] Elsebai HB, Yazici M, Thompson GH, et al. Safety and efficacy of growing rod technique for pediatric congenital spinal deformities. J Pediatr Orthop, 2011, 31(1): 1-5.

[51] Wang S, Zhang J, Qiu G, et al. Dual growing rods technique for congenital scoliosis: more than 2 years outcomes: preliminary results of a single center. Spine (Phila Pa 1976), 2012, 37(26): E1639-E1644.

[52] Akbarnia BA, Pawelek JB, Cheung KM, et al. Traditional Growing Rods Versus Magnetically Controlled Growing Rods for the Surgical Treatment of Early-Onset Scoliosis: A Case-Matched 2-Year Study. Spine Deform, 2014, 2(6): 493-497.

[53] Tang N, Zhao H, Shen JX, et al. Magnetically Controlled Growing Rod for Early-Onset Scoliosis: Systematic Review and Meta-Analysis. World Neurosurg, 2019, 125: e593-e601.

[54] Cheung JPY, Cheung KM. Current status of the magnetically controlled growing rod in treatment of early-onset scoliosis: What we know after a decade of experience. J Orthop Surg (Hong Kong), 2019, 27(3): 2309499019886945.

[55] Campbell RM Jr, Adcox BM, Smith MD, et al. The effect of mid-thoracic VEPTR opening wedge thoracostomy on cervical tilt associated with congenital thoracic scoliosis in patients with thoracic insufficiency syndrome. Spine (Phila Pa 1976), 2007, 32(20): 2171-2177.

[56] Emans JB, Caubet JF, Ordonez CL, et al. The treatment of spine and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prosthetic titanium rib: growth of thoracic spine and improvement of lung volumes. Spine (Phila Pa 1976), 2005, 30(17 Suppl): S58-S68.

[57] Flynn JM, Emans JB, Smith JT, et al. VEPTR to treat nonsyndromic congenital scoliosis: a multicenter, mid-term follow-up study. J Pediatr Orthop, 2013, 33(7): 679-684.

[58] Wang S, Zhang J, Qiu G, et al. One-stage posterior osteotomy with short segmental fusion and dual growing rod technique for severe rigid congenital scoliosis: the preliminary clinical outcomes of a hybrid technique. Spine (Phila Pa 1976), 2014, 39(4): E294-E299.

[59] Sun X, Xu L, Chen Z, et al. Hybrid Growing Rod Technique of Osteotomy With Short Fusion and Spinal Distraction: An Alternative Solution for Long-Spanned Congenital Scoliosis. Spine (Phila Pa 1976), 2019, 44(10): 707-714.

[60] Bekmez S, Demirkiran HG, Yilmaz G, et al. Convex Hemiepiphysiodesis: Posterior/anterior in-situ Versus Posterior-only With Pedicle Screw Instrumentation: An Experimental Simulation in Immature Pigs. J Pediatr Orthop, 2016, 36(8): 847-852.

[61] Demirkiran G, Dede O, Ayvaz M, et al. Convex Instrumented Hemiepiphysiodesis With Concave Distraction: A Treatment Option for Long Sweeping Congenital Curves. J Pediatr Orthop, 2016, 36(3): 226-231.

↑向上滑动阅读全文↑

引用本文






仉建国. 先天性脊柱侧凸的病因诊断与治疗现状. 中华骨与关节外科杂志, 2021, 14(5): 327-332.

来源:中华骨与关节外科杂志

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多