分享

CLIP-SEQ数据的计算分析

 GCTA 2022-06-11 发布于贵州


Computational analysis of CLIP-seq data.


|核心内容:

CLIP-SEQ实验是目前在全基因组水平上确定RNA结合蛋白结合位点的最重要手段。

计算分析可分为三个步骤。

在第一个预处理阶段,必须修剪原始读数并将其映射到基因组。该步骤必须特别适用于每个CLIP-SEQ协议。

下一步是峰值calling,这是去除非特异性信号确定靶RNA上真正的蛋白结合位点所必需的。在这里,试验方案特异的方法以及通用峰值调用分析包(程序)都是可用的。

尽管一些峰值calling程序的使用更为广泛,但每个峰值calling程序都有其特定的优点和缺点,因此比较几种方法的结果可能是有利的。

尽管在许多CLIP-SEQ出版物中,峰值calling通常是最后一步,但一个重要的后续任务是根据CLIP-SEQ数据确定结合模型。

这一点至关重要,因为CLIP-SEQ实验高度依赖于实验所在细胞的转录状态。

因此,单纯依赖不同细胞或条件的CLIP-SEQ确定的结合位点会导致较高的假阴性率。

然而,这一缺点可以通过应用预测更多假定结合位点的模型来规避。

原文摘要:


CLIP-seq experiments are currently the most important means for determining the binding sites of RNA binding proteins on a genome-wide level. 

The computational analysis can be divided into three steps. 

In the first pre-processing stage, raw reads have to be trimmed and mapped to the genome. 

This step has to be specifically adapted for each CLIP-seq protocol. 

The next step is peak calling, which is required to remove unspecific signals and to determine bona fide protein binding sites on target RNAs. 

Here, both protocol-specific approaches as well as generic peak callers are available. 

Despite some peak callers being more widely used, each peak caller has its specific assets and drawbacks, and it might be advantageous to compare the results of several methods.

Although peak calling is often the final step in many CLIP-seq publications, an important follow-up task is the determination of binding models from CLIP-seq data. 

This is central because CLIP-seq experiments are highly dependent on the transcriptional state of the cell in which the experiment was performed. 

Thus, relying solely on binding sites determined by CLIP-seq from different cells or conditions can lead to a high false negative rate. 

This shortcoming can, however, be circumvented by applying models that predict additional putative binding sites.




参考文献:http://www.bioinf./Publications/Uhl_Houwaart_Corrado-Compu_Analy_CLIP-2017.pdf

-------------------------------------------------------------------------


    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多