|
实变函数与泛函分析基础第三版(程其襄) 课后答案 |
|
|
???????????????????????????????????????? 1. A∪(B∩C) = (A∪B)∩(A∪C). x∈ (A∪(B∪C)). x∈A, x∈A∪B,x∈A∪C, x∈ (A∪B)∩(A∪C). x∈B∩C, x∈A∪B x∈A∪C, x∈ (A∪B)∩(A∪C), A∪(B∩C)? (A∪B)∩(A∪C). x ∈ (A∪B)∩ (A∪C). x ∈ A, x ∈ A∪ (B∩C). x A, x∈ A∪B x∈ A∪C, x∈ B x∈ C, x∈ B∩C, x∈ A∪ (B∩C), (A∪B)∩(A∪C)?A∪(B∩C). A∪(B∩C) = (A∪B)∩(A∪C). 2. (1)A?B =A?(A∩B) = (A∪B)?B; (2)A∩(B?C) = (A∩B)?(A∩C); (3)(A?B)?C =A?(B∪C); (4)A?(B?C) = (A?B)∪(A∩C); (5)(A?B)∩(C?D) = (A∩C)?(B∪D); (6)A?(A?B) =A∩B. (1)A?(A∩B) =A∩ (A∩B) =A∩( A∪ B) = (A∩ A)∪(A∩ B) =A?B; s s s s s (A∪B)?B = (A∪B)∩ B = (A∩ B)∪(B∩ B) =A?B; s s s (2)(A∩B)?(A∩C) = (A∩B)∩ (A∩C) = (A∩B)∩( A∪ C) = (A∩B∩ A)∪(A∩ s s s s B∩ C) =A∩(B∩ C) =A∩(B?C); s s (3)(A?B)?C = (A∩ B)∩ C =A∩ (B∪C) =A?(B∪C); s s s (4)A?(B?C) =A?(B∩ C) =A∩ (B∩ C) =A∩( B∪C) = (A∩ B)∪(A∩C) = s s s s s (A?B)∪(A∩C); (5)(A?B)∩(C?D) = (A∩ B)∩(C∩ D) = (A∩C)∩ (B∪D) = (A∩C)?(B∪D); s s s (6)A?(A?B) =A∩ (A∩ B) =A∩( A∪B) =A∩B. s s s 3. (A∪B)?C = (A?C)∪(B?C); A?(B∪C) = (A?B)∩(A?C). (A∪B)?C = (A∪B)∩ C = (A∩ C)∪(B∩ C) = (A?C)∪(B?C); s s s (A?B)∩(A?C) = (A∩ B)∩(A∩ C) =A∩ B∩ C =A∩ (B∪C) =A?(B∪C). s s s s s ∞ ∞ 4. ( A ) = A . s i s i i=1 i=1 ∞ ∞ x∈ ( A ), x∈S, x A , i,x A , x∈ A , s i i i s i i=1 i=1 1???? ??????????
∞ ∞ ∞ x∈ A . x∈ A , i,x∈ A , x∈ S,x A , x∈ S, x A , s i s i s i i i i=1 i=1 i=1 ∞ ∞ ∞ x∈ ( A ). ( A ) = A . s i s i s i i=1 i=1 i=1 5. (1) ( A )?B = (A ?B); (2)( A )?B = (A ?B). α α α α α∈Λ α∈Λ α∈Λ α∈Λ (1) A ?B = ( A )∩ B = (A ∩ B) = (A ?B); α α s α s α α∈Λ α∈Λ α∈Λ α∈Λ (2) A ?B = ( A )∩ B = (A ∩ B) = (A ?B). α α s α s α α∈Λ α∈Λ α∈Λ α∈Λ n?1 6. {A } B =A ,B =A ?( A ),n> 1. {B } n 1 1 n n ν n ν=1 n n A = B ,1≤n≤∞. ν ν ν=1 ν=1 i =j, ii i j?1 B ∩B ?A ∩(A ? A ) =A ∩A ∩ A ∩ A ∩ ∩ A ∩ ∩ A =?. i j i j n i j s 1 s 2 s i s j?1 n=1 n n B ?A (1 =i =n) B ? A . i i i i i=1 i=1 n n x∈ A , x∈A , x∈B ? B . x A , i x∈A , i 1 1 i 1 n i n i=1 i=1 i ?1 i ?1 n n n n n x A x∈A . x∈A ? A =B ? B . A = B . i in in i in i i i i=1 i=1 i=1 i=1 i=1 1 7. A = 0, ,A = (0,n),n = 1,2, , {A } 2n?1 2n n n lim A = (0,∞); n n→∞ x∈ (0,∞), N, xN 02n N x A , x∈ lim A , lim A ? (0,∞), n n n n→∞ n→∞ lim A = (0,∞). n n→∞ lim A =?; n n→∞ x ∈ lim A = ?, N, n > N, x ∈ A . 2n? 1 > N n n n→∞ 1 x∈A , 02n?1 n n n→∞ ∞ ∞ 8. lim A = A . n m n→∞ n=1m=n ∞ ∞ ∞ x∈ lim A , N, n>N,x∈A , x∈ A ? A , n n m m n→∞ m=n+1 n=1m=n ∞ ∞ ∞ ∞ ∞ lim A ? A . x ∈ A , n, x ∈ A , m≥ n, n m m m n→∞ n=1m=n n=1m=n m=n x∈A , x∈ lim A . n n n→∞ ∞ ∞ lim A = A . n m n→∞ n=1m=n 2 △△? ?△△△△????△△△?????? 9. (?1,1) (?∞,+∞) π ? : (?1,1) → (?∞,+∞). x ∈ (?1,1),?(x) = tan x. ? (?1,1) 2 (?∞,∞) 10. 1 1 2 2 2 2 S :x +y + (z? ) = ( ) (0,0,1) xOy M 2 2 (x,y,z)∈S\(0,0,1), x y ?(x,y,z) = , ∈M. 1?z 1?z ? S M 11. A A G = { | }, r , z z z z r z z z G G 12. ∞ A n n = 1,2, , A = A .A n+1 n n n n=0 n n +1 0 §4 6,A =a, §4 4,A =a. n 13. A ( ) A A : (x,y,r). (x,y) r x,y r 0 A =a. 14. f (?∞,∞) E, (1) x ∈ (?∞,∞), lim f(x + x) = f(x + 0) lim f(x + x) = f(x? 0) + ? x→0 x→0 (2)x∈E f(x+0)>f(x?0). (3) x ,x ∈E, x 1 2 1 2 1 1 2 2 x∈E, (f(x?0),f(x+0)), (3) E x 11 15. (0,1) [0,1] 3′?′′?????′?????′′′??′? (0,1) R ={r ,r , } , 1 2 ? ? ??(0) =r , 1 ? ? ? ? ? ?(1) =r , 2 ? ? ?(r ) =r ,n = 1,2, n n+2 ? ? ? ? ? ?(x) =x, x∈ ((0,1)\R), ? [0,1] (0,1) 16. A A A = {x ,x , } ,A A.A ={x ,x , ,x },A 1 2 n 1 2 n n ∞ n A . A 2 A = A , A A n n n n=1 A 17. [0,1] c. [0,1] A,[0,1] {r ,r , } , 1 2 √ √ √ 2 2 2 B = , , , , ?A 2 3 n √ √ 2 2 ?( ) = , n = 1,2, 2n n+1 √ 2 ?( ) =r , n = 1,2, n 2n+1 ?(x) =x, x B. ? A [0,1] [0,1] c, A c. 18. A A ={a }, x x x 1 2 3 x c A c. i x ∈A ,A =c,i = 1,2, . A R ? . ? A i i i i i E a ∈A.?(a ) = (? (x ),? (x ),? (x ), ). ? ∞ x x x x x x 1 1 2 2 3 3 1 2 3 1 2 3 ?(a ) =?(a ), i,? (x ) =? (x ). ? x = x x x x x x i i i i i 1 2 3 i 1 2 3 x , a =a . (a ,a ,a , )∈E ,a ∈R,i = 1,2, , ? x x x 1 2 3 ∞ i i i 1 2 3 x x x 1 2 3 x ∈ A , ? (x ) = a a ∈ A, ?(a ) = (? (x ),? (x ), ) = i i i i i. x x x x x 1 1 2 2 1 2 3 1 2 (a ,a , ), ? A E c. 1 2 ∞ ∞ 19. A c, n , A c. n 0 n 0 n=1 ∞ E =c, A =E . A ∞ n ∞ n i n=1 E R x = (x ,x , ,x , )∈E , P (x) =x . ∞ 1 2 n ∞ i i ? A =P (A ),i = 1,2, , i i i 4??????? ? ? A i i i 2 n ∞ i i ∞ ∞ ? ξ A . ξ ∈ A , i, ∈ A , ξ =P (ξ)∈ P (A ) =A , n n i i i i i i n=1 n=1 ∞ ? ξ ∈ R\A ξ A = E , ξ ∈ E i , n ∞ ∞ 0 i n=1 A =c. i 0 20. 0 1 T, T c. T ={{ξ ,ξ , }| ξ = 0or1,i = 1,2, } . 1 2 i T E ? :{ξ ,ξ , } →{ ξ ,ξ , } , ? T E ?(T) ∞ 1 2 2 3 ∞ A ≤ E = c, (0,1] 2 ∞ x∈ (0,1] x = 0.ξ ξ , ξ 0 1, f(x) ={ξ ,ξ , } , f 1 2 i 1 2 (0,1] T f((0,1]) T ≥ (0,1] =c. A =c. 5???′′′′′?′?′′??′?′′′′′′′′ o ˉ E E E 1. P ∈ E P U(P,δ) ( P ) 0 0 0 o P P E ( P ), P ∈E 0 1 1 0 P U(P,δ)( P ) U(P,δ)?E. 0 0 P ∈E , P U(P,δ), P U(P )?U(P,δ), 0 0 0 0 P ∈E∩U(P )? E∩U(P,δ) P = P, P P 1 0 1 0 1 P E. 0 P P P E, P U(P ) 0 0 1 0 0 P P E, P ∈E . 0 1 0 o P ∈E , U(P )? E. 0 0 o P ∈U(P,δ)? E, U(P )? U(P,δ)?E, P ∈E . 0 0 0 1 o ˉ 2. E [0,1] E R E ,E ,E . 1 1 1 1 1 o ˉ E = [0,1], E =?, E = [0,1]. 1 1 1 2 2 2 o ˉ 3. E ={(x,y)|x +y < 1}. E R E ,E ,E . 2 2 2 2 2 2 2 o 2 2 2 2 ˉ E ={(x,y)|x +y ≤ 1}, E ={(x,y)|x +y < 1}, E ={(x,y)|x +y ≤ 1}. 1 2 1 4. E 3 ? 1 ? sin , x = 0, x y = ? 0, x = 0 2 o R E E E . 3 3 3 o E = E ∪{(0,y)|?1≤y≤ 1}, E =?. 3 3 3 2 o ˉ 5. R 2 E ,E ,E 1 1 1 o ˉ E ={(x,0)|0≤ x≤ 1,},E =?,E = E . 1 1 1 1 ˉ 6. F F =F. ˉ ˉ ˉ F F ? F, F = F ∪F =F. F = F, F ?F ∪F = F = F, F 7. G F G F G?F = G∩ F F ?G = F ∩ G 8. f(x) (?∞,∞) a,E ={x|f(x) > a} E ={x|f(x)≥ a} 1?????????????? ?′?????? x ∈ E, f(x ) > a. f(x) δ > 0, x ∈ 0 0 (?∞,∞),|x?x |< δ f(x)> a, x∈U(x ,δ) x∈E, U(x ,δ)? E,E 0 0 0 x ∈ E, x → x (n→∞). f(x )≥ a, f(x) f(x ) = lim f(x )≥ a, n n 0 n 0 n n→∞ x ∈E, E 0 9. 1 1 F G = x|d(x,F) < ,G x ∈ G ,d(x ,F)< , n n 0 n 0 n n 1 1 1 y ∈ F, d(x ,y ) = δ < . ( y∈ F,d(x ,y)≥ , d(x ,F) = inf d(x ,y)≥ , 0 0 0 0 0 0 n n n y∈F 1 d(x ,F)< ). 0 n 1 = ?δ > 0, x∈U(x , ),d(x ,x) <. 0 0 n 1 1 d(x,y )≤ d(x ,x)+d(x ,y ) < +δ = + ? = . 0 0 0 0 n n 1 d(x,F) = inf d(x,y)≤ d(x,y )< , x∈G . U(x , )? G , G 0 n 0 n n n y∈F ∞ 1 x∈ G , n,x∈ G ,d(x,F) < . n→∞, d(x,F) = 0. F n n n n=1 ∞ x∈ F( x F, y ∈ F, d(x,y )→ 0, x∈ F ? F, ), G ? F. n n n n=1 ∞ ∞ G ?F,n = 1,2, , G ? F, G = F,F n n n n=1 n=1 ∞ G G G , G = G , n n n=1 ∞ ∞ G = ( G) = ( G ) = G , n n n=1 n=1 G G n 10. [0,1] 7 [0,1] 7 (0.7,0.8). [0,1] 7 (0.07,0.08) (0.17,0.18) (0.97,0.98). [0,1] n 7 (0.a a a 7,0.a a a 8), 1 2 n?1 1 2 n?1 a (i = 1,2, ,n?1) 0 9 7 {a ,a , ,a } i 1 2 n?1 n?1 ∞ A n n=1 2???????????????????????? [0,1] 7 ∞ A ∪(?∞,0)∪(1,∞) . n n=1 A ,(?∞,0),(1,∞) [0,1] 7 n 11. f(x) [a,b] c, E ={x|f(x)≥ c} E ={x|f(x)≤c} 1 f(x) [a,b] 8 E E E E 1 1 x ∈ [a,b]. f(x) x > 0,x → x ,f(x )≥ f(x ) + 0 0 0 n 0 n 0 0 f(x )≤f(x )? , c =f(x )+, x ∈ E ={x|f(x)≥ c}, n 0 0 0 n x E( f(x )0 0 0 0 n 12. §2 5: E =?,E =R , E ( ?E =?). P = (x ,x , ,x ) ∈ E,P = (y , ,y ) E. P = (ty + (1?t)x ,ty + 0 1 2 n 1 1 n t 1 1 2 (1?t)x , ,ty +(1?t)x ),0≤t≤ 1.t = sup{t|P ∈E}. P ∈?E. 2 n n 0 t t 0 P ∈ E. t = 1. t ∈ [0,1] t < t ≤ 1, P E. t ,1 > t > t 0 0 t n n 0 t ,t →t P ∈ E, P →P , P ∈?E. 0 n 0 t t t t n n 0 0 P E, t = 0, t ,0 < t < t ,t → t ,P → P ,P ∈ E, t 0 n n 0 n 0 t t t 0 n 0 n P ∈?E. ?E =?. t 0 13. P 1, P c. P ( P), 1 2 , = (0.1,0.2), 3 3 1 2 , = (0.01,0.02), 9 9 7 8 , = (0.21,0.22), 9 9 (n) n?1 n?1 n 2 I ,k = 1,2, ,2 k (n) I = (0.a a a 1,0.a a a 2), 1 2 n?1 1 2 n?1 k a ,a , ,a 0 2. [0,1]?P 1 2 n?1 1, P 1, x∈P, x a a a 1 2 n x = + + + + , 2 n 3 3 3 a 0 2. A, A? P. A? [0,1], [0,1]?P n a 1, [0,1]?P A i A? P. 3? A B φ: ∞ ∞ a 1 a n n φ : x = → , n n 3 2 2 n=1 n=1 ˉ ˉ a = 0 2, φ A B 1-1 A c, A? P, P ≥ c, n ˉ ˉ ˉ ˉ P ≤ c , P = c. 4??△△?? ?△△△?? ???△△ △△?△△ ? 1. E m E < +∞. ? ? E I E?I. m E≤m I < +∞. 2. E = {x | i = 1,2, } . > 0, I , x ∈ I , |I | = ( i i i i i i 2 ∞ ∞ p S P p p R x I ), I ? E, |I | = . i i i i i 2 i=1 i=1 ? m E = 0. ? ? 3. E m E > 0, m E c, E ? E , m E =c. 1 1 ? a = inf x,b = supx, E ? [a,b]. E = [a,x]∩E,a≤x≤ b,f(x) =m E x x x∈E x∈E [a,b] x> 0 ? ? |f(x+ x)?f(x)| =|m E ?m E | x+ x x ? ≤|m (E ?E)| x+ ? ≤m (x,x+ x] = x. x→ 0 f(x+ x)→f(x), f(x) x> 0, x→ 0 f(x? x)→f(x), f(x) [a,b] ? ? f(a) =m E =m (E∩{a}) = 0 a ? ? f(b) =m (E∩[a,b]) =m E. ? ? ? c,c < m E, x ∈ [a,b] f(x ) = c. m E = m ([a,x ]∩E) = c. 0 0 x0 0 ? E =E∩[a,x ]?E. m E =c. 1 0 1 4. S ,S , ,S ,E ?S ,i = 1,2. ,n, 1 2 n i i ? ? ? ? m (E ∪E ∪ ∪ E ) =m E +m E + +m E . 1 2 n 1 2 n S ,S , ,S §2 3 1, 1 2 n n n n n S P S S ? ? T, m (T ∩ S ) = m (T ∩S ). T = E , T ∩S = ( E )∩S = i i i i j i i=1 i=1 i=1 j=1 n n n n n n S S S S P P ? ? ? ? E ,T ∩( S ) = E , m ( E ) =m (T ∩( S )) = m (T ∩S ) = m E . i i i i i i i i=1 i=1 i=1 i=1 i=1 i=1 ? 5. m E = 0, E ? ? ? T,T = (E∩T)∪(T ∩ E), m T ≤m (E∩T)+m (T ∩ E). ? ? ? ? E ∩ T ? E, m (E ∩ T) ≤ m E = 0.T ∩ E ? T,m (T ∩ E) ≤ m T, ? ? ? m (E∩T)+m (T ∩ E)≤m T. 1?? ?????????????????????? ?????? ? ? ? m T =m (T ∩E)+m (T ∩ E), E 6. (Cantor) P [0,1] 1 2 , , , n 3 9 ∞ P n?1 n?1 2 2 , . P [0,1] = 1( ). n n 3 3 n=1 m[0,1] =m(P ∪([0,1]?P)) =mP +m([0,1]?P). mP =m[0,1]?m([0,1]?P) = 1?1 = 0, 0. p ? ? ? ? 7. A,B?R m B < +∞. A m (A∪B) =mA+m B?m (A∩B). A ? ? ? ? m (A∪B) =m ((A∪B)∩A)+m ((A∪B)∩ A) =mA+m (B?A). ? ? ? m B =m (B∩A)+m (B∩ A), ? ? ? ? ? m B < +∞, m (B∩ A)< +∞, m (B?A) =m B?m (A∩B), ? ? ? m (A∪B) =mA+m B?m (A∩B). 8. E > 0, G F, F ? E ? G, m(G?E)<,m (E?F)<. ∞ S mE <∞ > 0, {I},i = 1,2, , I ?E, i i i=1 ∞ ∞ ∞ ∞ P S P P | I |< mE +. G = I , G G ? E, mE ≤ mG≤ mI = | I |< i i i i i=1 i=1 i=1 i=1 mE +, mG?mE <, m(G?E)<. ∞ S mE =∞ E E = E (mE <∞), n n n=1 ∞ S E G , G ?E m(G ?E )< . G = G ,G n n n n n n n n 2 i=1 ∞ ∞ ∞ S S S G?E, G?E = G ? E ? (G ?E ). n n n n n=1 n=1 n=1 ∞ [ m(G?E)≤ m(G ?E )<. n n n=1 E E > 0 G,G? E, m(G? E)<. G? E =G∩E =E∩ ( G) =E? G, F = G, F m(E?F) =m(G? E)<. q 9. E?R , {A },{B }, A ?E?B m(B ?A )→ 0(n→∞), n n n n n n E 2 ???
?? ∞ ∞ T T i, B ? B , B ?E ? B ?E. E ?A ,B ?E ? B ?A , n i n i i i i i n=1 n=1 i, ! ∞ \ ? ? ? m B ?E ≤m (B ?E)≤m (B ?A ) =m(B ?A ). n i i i i i n=1 ∞ ∞ T T ? i→∞, m(B ?A )→ 0, m B ?E = 0. B ?E B i i n n n n=1 n=1 ∞ ∞ ∞ T T T B E = B ? B ?E n n n n=1 n=1 n=1 p 10. A,B?R , ? ? ? ? m (A∪B)+m (A∩B)≤m A+m B. ? ? ? ? m A = +∞ m B = +∞, m A< +∞ m B < +∞ ? ? G G G , G ?A,G ?B, mG =m A,mG =m B. δ 1 2 1 2 1 2 ? ? m (A∪B)≤m(G ∪G ),m (A∩B)≤m(G ∩G ). 1 2 1 2 ? ? ? ? m (A∪B)+m (A∩B)≤m(G ∪G )+m(G ∩G ) =mG +mG =m A+m B. 1 2 1 2 1 2 p ? 11. E ? R . > 0, F ? E, m (E?F) < , E ∞ S ? 1 n, F ? E, m (E?F ) < . F = F , n n n n n=1 F F ?E. n, 1 ? ? m (E?F)≤m (E?F )< . n n ? m (E?F) = 0, E?F E =F ∪(E?F) 12. M, ?M, ≤M. c c, ≥M, =M. 3??? ??? ? 1. f(x) E r, E[f > r] E[f =r] f(x) r,E[f >r] α, {r } α n ∞ S E[f > a] = E[f > r ], E[f > r ] E[f > α] f(x) E n n n=1 r,E[f =r] f(x) E = (?∞,∞),z (?∞,∞) √ √ x∈ z,f(x) = 3;x z,f(x) = 2, r,E[f = r] =? √ E[f > 2] = z f 2. f(x),f (x)(n = 1,2, ) [a,b] k n ∞ \ 1 lim E |f ?f |< n k n→∞ k=1 E f (x) f(x) n A E f x ∈ A, k, N, n > N n 1 |f (x)?f(x)|< , n k 1 x∈ lim E |f ?f |< . n k n→∞ k ∞ \ 1 x∈ lim E |f ?f |< . n k n→∞ k=1 h i ∞ T 1 1 1 x∈ lim E |f ?f |< , > 0, k , <, x∈ lim E |f ?f |< n 0 n k k k 0 0 n→∞ n→∞ k=1 h i 1 1 N, n > N x ∈ E |f ?f |< , | f (x) ? f(x) |< < , n n k k 0 0 lim f (x) = f(x), x∈A. n n→∞ ∞ \ 1 A = lim E |f ?f |< . n k n→∞ k=1 3. {f } E n §1 6, lim f (x) lim f (x) E E[ lim f = +∞] n n n n→∞ n→∞ n→∞ f +∞ E[ lim f =?∞] f ?∞ n n n n→∞ E[ lim f > lim f ] f f (x) E n n n n n→∞ n→∞ E?F[ lim f = +∞]?E[ lim f =?∞]?E[ lim f > limf ]. n n n n n→∞ n→∞ n→∞ 1????? ??? E[ lim f = +∞]∪E[ lim f =?∞]∪E[ lim f > lim f ] n n n n n→∞ n→∞ n→∞ n→∞ 4. E [0,1] ( x, x∈ E, f(x) = ?x, x∈ [0,1]?E. f(x) [0,1] |f(x)| f(x) 0∈E, E[f ≥ 0] = E 0 E, E[f > 0] = E f(x) x∈ [0,1] |f(x)|= x |f(x)| [0,1] 5. f (x)(n = 1,2, ) E a.e. |f |a.e. f. n n > 0 c E ?E,m(E\E ) <, E n |f (x)|≤c. 0 0 0 n mE <∞. E[| f |= ∞],E[f f] n = 0,1,2, . E = E[f n n 1 n ∞ S f]∪( E[|f |=∞]), mE = 0. E?E f (x) f(x). E =E?E , n 1 1 n 2 1 n=0 x∈E ,sup| f (x)|<∞. 2 n n ∞ [ E = E [sup|f |≤ k],E [sup|f |≤ k]?E [sup|f |≤ k +1]. 2 2 n 2 n 2 n n n n k=1 mE = lim mE [sup | f |≤ k]. k mE ? mE [sup | f |≤ k ] < . 2 2 n 0 2 2 n 0 k→∞ n n E =E [sup|f |≤ k ],c = k . E n,|f (x)|≤ c, 0 2 n 0 0 0 n n m(E?E ) = m(E?E )+m(E ?E ) <. 0 2 2 0 6. f(x) (?∞,∞) g(x) [a,b] f(g(x)) E = (?∞,∞),E = [a,b]. f(x) E c,E [f < c] 1 2 1 1 ∞ S E [f >c] = (α ,β ), (α ,β ) ( α 1 n n n n n n=1 ∞ ∞ S S ?∞,β +∞). E [f(g) > c] = E [α < g < β ] = (E [g > α ]∩E [g < β ]), n 2 2 n n 2 n 2 n n=1 n=1 g E E [g > α ],E [g <β ] E[f(g)>c] 2 2 n 2 n 7. f (x),(n = 1,2, ) E ” ” f(x), {f }a.e. n n f. f (x) E ” ” f(x), δ > 0, n E ? E, m(E?E ) < δ f E f(x). E E f δ δ n δ 0 n δ, E ? E?E ( E f ), mE ≤ m(E?E ) < δ, δ → 0, 0 δ δ n 0 0 mE = 0. f (x) E a.e. f(x)( ). 0 n 2 8. f(x) E δ > 0, E ? E δ f(x) E m(E?E )< δ, f(x) E a.e. δ δ 1/n, E ? E, f(x) E n n 1 m(E?E ) < . n n ∞ ∞ S S 1 E = E? E , n, mE = m(E? E )≤ m(E?E ) < . n→∞, 0 n 0 n n n n=1 n=1 ∞ ∞ S S mE = 0. E = (E?E )∪E = ( E )∪E = E . a,E[f > a] = E [f > 0 0 0 n 0 n 0 n=1 n=0 ∞ S ? ? a]∪( E [f > a]), f E E [f > a] m (E [f > a])≤ m E = 0, n n n 0 0 n=1 E [f > a] E[f >a] f f E 0 n ∞ S E f(x)a.e. n n=1 9. {f } E f, f (x) ≤ g(x)a.e. E,n = 1,2, . n n f(x)≤g(x) E f (x)?f(x), {f }?{f }, f (x) E a.e. f(x). E n n n n 0 i i ∞ ∞ S P f (x) f(x) E = E[f > g]. mE = 0,mE = 0.m( E )≤ mE = 0. n n n 0 n n n i n=0 n=0 ∞ ∞ S S E? E f (x)≤g(x),f (x) f(x), f(x) = limf (x)≤g(x) E? E n n n n i i n i n=0 n=0 f(x)≤ g(x) E 10. E f (x)?f(x), f (x)≤ f (x) n = 1,2, , n n n+1 f (x) f(x). n f (x)?f(x), {f }?{f }, f (x) E a.e. f(x). E n n n n 0 i i f (x) f(x) E =E[f < f ], mE = 0,mE = 0. n n n n+1 0 n i ∞ ∞ [ X m( E )≤ mE = 0 n n n=0 n=0 ∞ S E? E f (x) f(x), f (x) f (x) f(x). ( n n n n i n=0 ∞ S ). E f (x) f(x), n n n=0 f (x)a.e. f(x). n 11. E f (x)?f(x), f (x) = g (x)a.e. n = 1,2, , g (x)?f(x). n n n n ∞ ∞ S P E = E[f = g ] m( E )≤ mE = 0. σ > 0,E[| f ?g |≥ σ]? n n n n n n n=1 n=1 ∞ S ( E )∪E[|f?f |≥ σ]. n n n=1 ∞ [ mE[|f ?g |≥ σ]≤m( E )+mE[|f?f |≥σ] = mE[|f?f |≥σ]. n n n n n=1 3????????? ??? ?
?? f (x)?f(x), 0≤ limmE[|f?g |≥ σ]≤ limmE[| f?f |]≥ σ = 0 g (x)?f(x). n n n n 12. mE < +∞, E f (x)? f(x) {f } n n {f }, {f } {f }, lim f (x) = f(x),a.e. E. n n n n k k k k j j j→∞ {f (x)} E n f(x). η > 0, {mE[| f ?f |≥ η ]} > 0, 0 n 0 0 {f }, n k mE[|f ?f |≥ η ] > > 0. (1) n 0 0 k {f } f(x) {f } n n k k j E a.e. f, mE < +∞, E f ? f(x), (1) n k j 13. mE <∞, f (x) g (x),n = 1,2, , n n f(x) g(x), (1)f (x)g (x)?f(x)g(x); n n (2)f (x) +g (x)? f(x)+g(x); n n (3)min{f (x),g (x)}? min{f(x),g(x)};max{f (x),g (x)}? max{f(x),g(x)}. n n n n (1) f(x)a.e. mE[|f |=∞] = 0. ∞ T E[| f |≥ n] = E[| f |=∞], E[| f |≥ n]? E[| f |≥ n+1] E[| f |≥ 1]? E,mE[| n=0 f |≥ 1]≤ mE <∞, mE[|f |=∞] = lim mE[|f |≥ n] = 0. n→∞ lim mE[|g|≥n] = 0. n→∞ > 0,σ > 0, k,mE[|f |≥ k]< mE[|g|≥k]< 5 5 σ σ = min ,1 , f ?f,g ?g, N, n>N mE[|g ?g|≥ σ ]< 0 n n n 0 2(k+1) ,mE[|f ?f |≥ σ ] < n 0 5 5 E[|g |≥ k +1]?E[|g|≥ k]∪E[|g ?g|≥ 1]? E[|g|≥ k]∪E[|g ?g|≥ σ ]. n n n 0 2 mE[| g |≥ k +1]≤ mE[|g|≥ k]+mE[| g ?g|≥σ ]< + = . n n 0 5 5 5 h i σ σ E |g f ?g f |≥ ? E[|g |≥k+1]∪E |f ?f |≥ ? E[|g |≥k+1]∪E[|f ?f |≥ σ ]. n n n n n n n 0 2 2(k +1) h i σ 2 3 mE |g f ?g f |≥ ≤ mE[|g |≥ k +1]+mE[|f ?f |≥ σ ]< + = . n n n n n 0 2 5 5 5 h i σ σ E |fg ?fg|≥ ?E[|f |≥ k+1]∪E |g ?g|≥ ?E[| f |≥ k]∪E[|g ?g|≥σ ]. n n n 0 2 2(k +1) 4???? ?????? h i σ 2 mE | fg ?fg|≥ ≤ mE[|f |≥ k]+mE[| g ?g|≥ σ ]< + = . n n 0 2 5 5 5 h i h i σ σ E[|g f ?gf |≥ σ]? E |g f ?g f |≥ ∪E |fg ?fg|≥ , n n n n n n 2 2 h i h i σ σ 3 2 mE[|g f ?gf |≥σ]≤mE | g f ?g f |≥ +mE |fg ?fg|≥ < + =. n n n n n n 2 2 5 5 > 0,σ > 0, N, n>N mE[|g f ?gf |≥σ] < , g f ? gf. n n n n (2) h i h i σ σ E[| (f +g )?(f +g)|≥ σ]? E |f ?f |≥ ∪E |g ?g|≥ n n n n 2 2 h i h i σ σ mE[| (f +g )?(f +g)|≥ σ]≤mE |f ?f |≥ +mE |g ?g|≥ , n n n n 2 2 h i h i σ σ lim mE[| (f +g )?(f +g)|≥ σ]≤ lim mE |f ?f |≥ + lim mE |g ?g|≥ . n n n n n→∞ n→∞ 2 n→∞ 2 f +g ?f +g. n n (3) f ?f, |f |?|f |. n n E[|f ?f |≥σ]? E[||f |?|f ||≥ σ]. n n lim mE[||f |?|f ||≥ σ]≤ lim mE[|f ?f |≥σ] = 0, |f |?|f |. n n n n→∞ n→∞ f ?f, a = 0,af ?af. n n σ E[|af ?af |≥ σ] = E |f ?f |≥ , n n | a| σ lim mE[|af ?af |≥ σ] = lim mE |f ?f |≥ = 0. n n n→∞ n→∞ |a| f (x)+g (x)?|f (x)?g (x)| n n n n min{f (x),g (x)} = . n n 2 (2), f (x)+g (x)?f +g,f (x)?g (x)?f?g. n n n n | f (x)?g (x)|?|f(x)?g(x)|, n n (2), f (x)+g (x)?|f (x)?g (x)|?f(x)+g(x)?| f(x)?g(x)|. n n n n f (x)+g (x)?|f (x)?g (x)| f(x)+g(x)?| f(x)?g(x)| n n n n ? . 2 2 5 min{f (x),g (x)}? min{f(x),g(x)}. n n f (x)+g (x)+|f (x)?g (x)| n n n n max{f (x),g (x)} = , n n 2 max{f (x),g (x)}? max{f(x),g(x)}. n n 6?? 1. Lebesgue Darboux Darboux f (x) E E D : E , E , , E , max mE → 0 1 2 n i 1≤i≤n ˉ S (D, f )→ f (x)dx, S (D, f )→ f (x)dx. E E ? [0, 1] ? ? ? ? 1, x [0,1] , ? f (x)= ? ? ? ? 0, x [0,1] . n n i?1 i n n?1 n, [0,1] D = {E }, E = , , i= 1, 2, , n? 1, E = , 1 . n n i i n n n 1 n max mE = → 0(n→∞). i n 1≤i≤n n n 1 n S (D, f )= sup mE = 1 = 1. i n n x∈E i=1 i i=1 f (x) [0,1] ˉ f (x)dx= f (x)dx= 0. [0,1] [0,1] Darboux 1 2. Cantor P f (x) = 0, P 0 0 n 3 n(n= 1, 2, ), f (x) f (x) E P n 0 n?1 1 2 mE = , n n n 3 3 ∞ ∞ ∞ n?1 2 f (x)dx= f (x)dx= nmE = n = 3. n n 3 [0,1] E n n=1 n=1 n=1 f (x) 3. 3. f (x) E e = E[| f |≥ n], n lim n me = 0. n n f (x) E E a.e. mE[| f |=∞]= 0. ∞ e ? e , me ≤ mE <∞ e = E[| f |=∞], n n+1 1 n n=1 lim me = mE[| f |=∞]= 0. n n 1????????? | f (x)| > 0, δ > 0, e? E me < δ | f (x)| dx < . e δ > 0, N, n > N me < δ, n n me ≤ | f (x)| dx < . n e n lim n me = 0. n n 4. mE <∞, f (x) E E = E[n? 1≤ f < n], f (x) E n ∞ | n| mE <∞. n ?∞ f (x) E | f (x)| E n≥ 1 E n? 1≤| f (x)|= f (x) < n. n n≤ 0 E | n|≤| f |≤| n? 1|= 1? n, n ∞ ?∞ ∞ ?∞ ∞ > | f (x)| dx= | f | dx+ | f | dx≥ (n? 1)mE + | n| mE n n E E E n n n=1 n=0 n=1 n=0 ∞ ?∞ ∞ ∞ ∞ = | n| mE + | n| mE ? mE = | n| mE ? mE , n n n n n ?∞ n=1 n=0 n=1 n=1 E E n ∞ ∞ mE = m( E )≤ mE <∞, n n n=1 n=1 ∞ | n| mE <∞. n ?∞ ∞ | n| mE , n ?∞ ∞ ?∞ ∞ ?∞ | f (x) | dx= | f | dx+ | f | dx≤ nmE + | n? 1| mE n n E E E n n n=1 n=0 n=1 n=0 ∞ ?∞ ?∞ ∞ = | n| mE + | n| mE + mE ≤ | n| mE + mE <∞. n n n n ?∞ n=1 n=0 n=0 + ? + ? | f (x)| f (x) f (x) f (x)= f (x)? f (x) 5. f (x) [a, b] R ( ), f (x) [a, b] L | f (x)| [a, b] R ( ) , b f (x)dx= (R) f (x)dx. [a,b] a f (x) [a, b] R ( ), 0 < < b ? a, f (x) [a+ , b] R | f (x)| [a+ , b] R §2 4 b (R) | f (x)| dx= | f (x)| dx. a+ [a+, b] 2?? → 0, b (R) | f (x)| dx= | f (x) | dx. a [a,b] f (x) [a, b] L | f (x)| [a, b] §5 7, b b b + ? + ? f (x)dx= f (x)dx? f (x)dx= (R) f (x)dx? (R) f (x)dx= (R) f (x)dx. [a,b] [a,b] [a,b] a a a 6. { f } E lim f (x)dx= 0, f (x)? 0. n n n E n→∞ σ > 0, f n σmE[| f |≥ σ]≤ f (x)dx≤ f dx. n n n E[| f |≥σ] E n 1 mE[| f |≥ σ]≤ f (x)dx, n n σ E 1 lim mE[| f |≥ σ]= lim f (x)dx= 0. n n n→∞ σ E f (x)? 0. n 7. mE <∞,{ f } a.e. n | f (x)| n lim dx= 0 n→∞ 1+| f (x)| n E f (x)? 0. n f ? 0 n | f | n E ≥ σ ? E[| f |≥ σ], n 1+| f | n | f | n lim mE ≥ σ ≤ lim mE[| f |≥ σ]= 0. n 1+| f | n | f | | f | n n ? 0, 0≤ < 1(n= 1, 2, ), mE <∞. 1+| f | 1+| f | n n | f (x)| n lim dx= 0dx= 0. n→∞ 1+| f (x)| n E E | f (x)| | f (x)| n n x lim dx = 0, 6 dx ? 0. y = , 1+| f (x)| 1+| f (x)| 1+x E n E n n→∞ x >?1 | f | σ n E ≥ = E[| f |≥ σ], n 1+| f | 1+σ n | f | n σ lim mE[| f |≥ σ]= lim mE ≥ = 0, f ? 0. n n 1+| f | 1+σ n n→∞ n→∞ 1 sin x 8. f (x)= , 0 < x ≤ 1, α f (x) [0,1] L α x 3 α≥ 1 1 1 1 ∞ π 1 1 1 1 sin y | f (x)| dx≥ | sin | dx≥ | sin | dx= | | dy=∞, x x x x y 0 0 0 π α≥ 1 f (x)L 1 sin 1 x 1 α < 1 [0,1] ≤ , f (x)L α α α x x |x | 9. [0,1] n E , E , , E , [0,1] n 1 2 n q q/n. ? (x) E [0,1] q [0,1] i i n ? (x)≥ q. mE = ? (x)dx, i i i [0,1] i=1 n n mE = ? (x)dx≥ qdx= q. i i [0,1] [0,1] i=1 i=1 q E , mE ≥ . i i n 10. mE, 0, f (x) E ?(x), f (x)?(x)dx= 0, E f (x)= 0 a.e. E. δ > 0, ?(x) E[ f > δ] δmE[ f ≥ δ]≤ f (x)dx= f (x)?(x)dx= 0, E[ f≥δ] E mE[ f ≥ δ]= 0. mE[ f ≤?δ]= 0, mE[| f|≥ δ]= 0. ∞ 1 E[ f , 0]= E | f|≥ . n n=1 ∞ 1 mE[ f , 0]≤ mE | f|≥ = 0, f (x)= 0 a.e. E. n n=1 11. dt lim = 1. n 1 t n n (0,∞) 1+ t n t ∈ (0, 1) 1 1 1 ≤ ≤ (n > 2); √ n 1 1 t n t n t 1+ t n t ∈ [1,∞) n > 2 1 1 2n 4 = < < . n 1 1 2 2 t n?1 2 t (n? 1) t n n 1+ t 1+ t+ t + t 2n n 4′′′′ ? 1 ? ? ? ? , t ∈ (0, 1), √ ? ? ? t F(t)= ? ? ? ? 4 ? ? , t ∈ [1,∞), ? 2 t 1 ∞ dt 4dt F(x)dx= √ + = 6, 2 t t (0,∞) 0 1 F(x) (0,∞) dt 1 dt lim = lim dt= = 1. n 1 n 1 t n t n t e n n (0,∞) (0,∞) (0,∞) 1+ t 1+ t n n 1 2 3 12. = (1? x)+ (x ? x )+ , 0 < x < 1, 1+x 1 1 1 ln 2= 1? + ? + . 2 3 4 n n+1 [0,1] x ? x ≥ 0, §5 3 ∞ ∞ 1 1 1 1 1 1 1 1 2n 2n+1 dx= (x ? x )dx= ? = 1? + ? + , 1+ x 2n+ 1 2n+ 2 2 3 4 0 0 n=0 n=0 1 1 1 1 1 dx= ln 2, ln 2= 1? + ? + . 1+x 2 3 4 0 13. f (x, t) |t? t | < δ x [a, b] K, 0 ? f (x, t) ≤ K, a≤ x≤ b, |t? t | < δ, 0 ?t b b d f (x, t)dt= f (x, t)dx. t dt a a h , lim h = 0 h , 0. n n n n→∞ b b d 1 f (x, t)dt= lim [ f (x, t+ h )? f (x, t)]dx, n dt n→∞ h a n a f (x, t+ h )? f (x, t) f (x, t+θh ) h n n n t = =| f (x, t+θh )|≤ K, n t h h n n 0 < θ < 1, a≤ x≤ b, t ?δ < t+θh < t +δ. 0 n 0 b b b d f (x, t+ h )? f (x, t) n f (x, t)dt= lim dx= f (x, t)dx. t n→∞ dt h n a a a 14. ∞ 1 p x 1 1 ln dx= (p >?1). 2 1? x x (p+ n) 0 n=1 5?′′′′′?????′?′?′′??? ∞ ∞ p x 1 1 1 n p n+p ln = ( x )x ln = x ln , 1? x x x x n=0 n=0 1 n+p x∈ (0, 1) x ln ≥ 0, x ∞ ∞ ∞ 1 1 p x 1 1 1 n+p ln dx=? x ln xdx= = . 2 2 1? x x (n+ p+ 1) (n+ p) 0 0 n=0 n=0 n=1 15. { f } E lim f (x)= f (x)a.e. E, n n n→∞ | f (x)|dx < K, K , n E f (x) | f (x)|dx= lim | f (x)|dx≤ lim | f (x)|dx≤ K, n n n→∞ E E n→∞ E | f (x)| f (x) 16. f (x) [a? , b+ ] b lim | f (x+ t)? f (x)|dx= 0. t→0 a §4 1, σ > 0, [a? , b+ ] ?(x), b+ σ | f (x)??(x)|dx < . 3 a? ?(x) [a?, b+ ] δ > 0( δ < ), x , x ∈ [a?, b+ ], |x ? x | < δ, σ |?(x )??(x )| < . 3(b? a) 0 < t < δ x ∈ [a, b], σ |?(x+ t)??(t)| < , 3(b? a) b b b b | f (x+ t)? f (x)|dx≤ | f (x)??(x)|dx+ | f (x+ t)??(x+ t)|dx+ |?(x+ t)??(x)|dx a a a a σ σ σ < + + (b? a)= σ. 3 3 3(b? a) b lim | f (x+ t)? f (x)|dx= 0. t→0 a 6′′′???′′???′′′′?? 17. f (x), f (x)(n= 1, 2, ) E lim f (x)= f (x)a.e. E, n n n→∞ lim | f (x)|dx= | f (x)|dx, n n→∞ E E e? E, lim | f (x)|dx= | f (x)|dx. n n→∞ e e | f (x)|dx= lim | f (x)|dx≤ lim | f (x)|dx. n n e e e n→∞ n→∞ | f (x)|dx≥ lim | f (x)|dx. n n→∞ e e | f (x)|dx < lim | f (x)|dx, n n→∞ e { f (x)}, n i lim | f (x)|dx= lim | f (x)|dx > | f (x)|dx, n n i n→∞ i→∞ e e e lim | f (x)|dx= lim | f (x)|dx? lim | f (x)|dx < | f (x)|dx? | f (x)|dx= | f (x)|dx, n n n i i i i→∞ i→∞ i→∞ E?e E e E e E?e lim | f (x)|dx≥ | f (x)|dx≥ lim | f (x)|dx, n n n→∞ n→∞ e e e lim | f (x)|dx= | f (x)|dx. n n→∞ e e 18. f (x) (0,∞) lim f (x)= 0. x→∞ f (x) (0,∞) | f (x)| (0,∞) lim f (x), 0 , > 0 0 x→∞ x ∈ (0,∞), lim x = ∞, | f (x )| ≥ . f (x) (0,∞) δ > 0, n n n 0 n→∞ 0 x , x ∈ (0,∞), |x ? x | < δ | f (x )? f (x )| < . x ∈ (x ?δ, x +δ) n n 2 0 | f (x)? f (x )| < . n 2 0 0 | f (x)|≥| f (x )|? ≥ . n 2 2 x →∞, {x }, x < x , |x ?x | > 2δ, i= 1, 2, . E = (x ?δ, x +δ), n n n n n n n n n i i i+1 i+1 i i i i {E } n i ∞ ∞ ∞ 0 | f (x)|dx≥ | f (x)|dx= | f (x)|dx≥ mE = δ =∞, n 0 ∞ i 2 (0,∞) E E n n i i=1 i i=1 i=1 i=1 7
| f (x)| (0,∞) lim f (x)= 0. x→∞ p q p q 19. f (x) R g(y) R f (x) g(y) R × R p p p q f (x) R R R × R p q p q g(y) R × R f (x)g(y) R × R p q f (x), g(y) §6 4, f (x)g(y) R × R f (x)g(x)dxdy= dx f (x)g(y)dy= f (x)dx g(y)dy <∞, p q p q p q R ×R R R R R + ? + ? + ? + f (x), g(x) f (x)= f (x)? f (x), g(y)= g (y)?g (y), f (x), f (x), g (y), ? + + ? ? ? + + ? g (y) f (x)g(y)= f (x)g (y)+ f (x)g (y)? f (x)g (y)? f (x)g (y) f (x)g(y) 20. D :?1≥ x≥ 1,?1≥ y≥ 1 ? xy 2 2 ? ? , x + y , 0, ? ? 2 2 2 ? (x + y ) f (x)= ? ? ? ? ? 0, x= y= 0, f (x, y) f (x, y) D 1 xy x, y f (x, y) dx 2 2 2 ?1 (x +y ) 1 xy dy 2 2 2 (x +y ) ?1 1 1 1 1 xy xy dy dx= dx dy= 0. 2 2 2 2 2 2 (x + y ) (x + y ) ?1 ?1 ?1 ?1 f (x, y) D f (x, y) D : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 1 1 1 xy dy dx 2 2 2 (x +y ) 0 0 1 xy 1 y dx= ? 2 2 2 2 (x + y ) 2y 2(y + 1) 0 [0,1] f (x, y) D 21. f (x), g(x) E f (x)g(x) E E = E[g≥ y]. y F(y)= f (x)dx E y y > 0 +∞ F(y)dy= f (x)g(x)dx. 0 E f (x), g(x) E y > 0,E F(y)= f (x)dx y E y ( +∞) F(y)≥ 0. ? ? +∞ +∞ ∞ g(x) ? ? ? ? ? ? ? ? F(y)dy= f (x)dx dy= χ (x) f (x)dx dy= f (x) dy dx= f (x)g(x)dx. ? ? E y 0 0 E 0 E E 0 E y 8??
1. (a,b) f(x),g(x) (a,b) E (a,b) E f(x) =g(x). M f(x) N g(x) x ∈ M, f(x +0) = f(x ) = f(x ? 0). E (a,b) x ∈E, 0 0 0 0 n x ≤x lim x =x , n 0 n 0 n→∞ f(x ?0) = lim f(x ) = lim g(x ) =g(x ?0). 0 n n 0 n→∞ n→∞ f(x +0) =g(x +0), x g(x) x ∈E, M ?N. 0 0 0 0 N ?M, M =N, f(x) g(x) 2. {f } [a,b] f (x) → f(x)(n→∞), f(x) n n b (f )n a [a,b] T :a =x 0 1 m m b |f (x )?f (x )|≤ (f )n i n i?1 n a i=1 m m |f (x )?f (x )| = lim |f (x )?f (x )|≤K. n i n i?1 n i n i?1 n→∞ i=1 i=1 b f(x) [a,b] (f)≤K. a α 1 3. f(x) =x sin (0≤x≤ 1;α,β > 0) β x α≤β, [0,1] 1 ? π β x = 0,x = ((n?1)?k)π + ,k = 1,2,··· ,n?1,x = 1. 0 k n 2 n n 1 1 α α |f(x )?f(x )| = x sin ?x sin k k?1 k k?1 β β x x k k?1 k=1 k=1 α α n?1 β β 1 1 ≥ + π π ((n?1)?k)π + (n?k)π + 2 2 k=1 n?1 1 1 ≥ + π π ((n?1)?k)π + (n?k)π + 2 2 k=1 n?1 1 1 > + (n?k)π (n?k +1)π k=1 n?1 n 2 2 1 = . > (n?k +1)π π k k=2 k=1 1?′′′′′′′′′′′′ ?′′ n 1 =∞, k k=2 1 ∞ (f) = sup |f(x )?f(x )| =∞, k k?1 0 k=1 f(x) [0,1] α>β > 0. 1 1 α?1 α?β?1 f (x) =αx sin ?βx cos , β β x x α?1 α?β?1 |f (x)|≤αx +βx . α>β > 0 α?1> 1,α?β?1>?1. |f (x)| [0,1] R L f (x) [0,1] x x x x 1 1 α α (L) f (t)dt = lim(L) f (t)dt = lim(R) f (t)dt = lim t sin =x sin ?0 =f(x)?f(0). β β δ→0 δ→0 δ→0 t x 0 δ δ δ x f(x) =f(0)+ f (t)dt. 0 f(x) [0,1] 4. f(x) [a,b] f (x)≥ 0a.e. [a,b], f(x) x ,x ∈ [a,b],x >x . f(x) [a,b] 1 2 2 1 x 1 f(x ) =f(a)+ f (t)dt; 1 a x 2 f(x ) =f(a)+ f (t)dt. 2 a x 2 f(x )?f(x ) = f (t)dt. 2 1 x 1 x 2 f (x)≥ 0a.e. [a,b], f (t)dt≥ 0, f(x )≥f(x ), f(x) 2 1 x 1 5. f(x) [a,b] M > 0, > 0 b (f)≤M, a+ f(x) [a,b] ?x∈ (a,b), b |f(x)?f(b)|≤ (f)≤M, x |f(x)|≤M +|f(b)|, [a,b] T, T :a =x 0 1 2 n 2′′′′′′′′′ T n n v = |f(x )?f(x )| =|f(x )?f(a)|+ |f(x )?f(x )| i i?1 1 i i?1 i=1 i=2 b ≤|f(x )|+|f(a)|+ (f)≤ 2M +|f(b)|+|f(a)|, 1 x 1 b (f)≤ 2M +|f(b)|+|f(a)|<∞, a f(x) [a,b] ∞ 6. {f } [a,b] f(x) = f (x) [a,b] n n n=1 f(x) [a,b] n, f (x) [a,b] n x f (x) =f (a)+ f (t)dt. n n n a f (x) f (x)≥ 0,a.e. [a,b]. f(x) [a,b] n n f (x) [a,b] L ∞ ∞ ∞ x f(x) = f (x) = f (a)+ f (t)dt. n n n a n=1 n=1 n=1 ∞ ∞ x x f (t)dt = f (t)dt. n n a a n=1 n=1 ∞ f (x) n n=1 ∞ ∞ b f (t)dt≤ [f (b)?f (a)] <∞. n n n a n=1 n=1 ∞ f (x) [a,b] L n n=1 ∞ ∞ x f(x) = f (a)+ f (t)dt n n a n=1 n=1 [a,b] 7. f(x) [a,b] (1)f(x) [a,b] Lipschitz (2)f(x) [a,b] (2) (1). x f(x) = g(t)dt, a 3′′′?′′′′′′′′ ′′?′′′′′′′′′ g(x) [a,b] |g(x)|≤K,x∈ [a,b]. [a,b] x,x , x >x , x |f(x )?f(x )| = g(t)dt ≤K|x ?x |, x f(x) [a,b] Lipschitz (1) (2). f(x) [a,b] Lipschitz f(x) [a,b] x f(x) =f(a)+ f (t)dt. a x,y∈ [a,b], x f (t)dt =|f(x)?f(y)|≤K|x?y|, y K Lipschitz |f (x)|≤K,a.e. [a,b]. ? ? f (x), |f (x)|≤K, g(x) = ? K, |f (x)| >K, g(x) [a,b] x f(x) =f(0)+ g (t)dt. 0 8. ” ” S ” ” f(x),α(x) [a,b] [a,b] T :a =x 0 1 n M m f(x) [x ,x ] i = 1,2,··· ,n, i i i?1 i n S(T,f,α) = M (α(x )?α(x )), i i i?1 i=1 n s(T,f,α) = m (α(x )?α(x )). i i i?1 i=1 ˉ b f(x)dα(x) = infS(T,f,α), T a b f(x)dα(x) = sups(T,f,α), T a ˉ b b f(x)dα(x) = f(x)dα(x), f(x) α(x)S a a ” ” ” ” ? 1 1 ? ?0, x∈ ?1,? ∪ ,1 , ? 2 2 f(x) = ? 1 1 ? ? 1, x∈ ? , , 2 2 4
? ? 1 1 ? ?0, x∈ ?1,? ∪ ,1 , ? 2 2 α(x) = ? 1 1 ? ? 1, x∈ ? , . 2 2 1 1 [?1,1] T :?1 = x <··· < x < x <··· < x < < x <··· < x = 1, 0 i?1 i j?1 j n 2 2 n σ = f(ξ )[α(x )?α(x )] =f(ξ )?f(ξ ) i i i?1 i j i=1 ? 1 1 ? ?1, ξ >? ,ξ > , i j ? ? 2 2 ? ? ? 1 1 1 1 = 0, ξ >? ,ξ < ξ ,ξ > , i j i j ? 2 2 2 2 ? ? ? ? 1 1 ? ? ?1, ξ ,ξ < , i j 2 2 σ f(x) [?1,1] α(x) S ” ” f(x) S T :?1 = x < x <··· < x = 1, 0 1 n 1 1 ? , (x ,x ) α(x ) = α(x ) = ··· = α(x ) = 0. S(T,f,α) = i?1 i 0 1 n 2 2 1 1 1 1 0,s(T,f,α) = 0; ? , ? ∈ [x ,x ], ∈ [x ,x ], i?1 i j?1 j 2 2 2 2 n S(T,f,α) = M (α(x )?α(x )) = 1?1 = 0, k k k?1 k=1 n s(T,f,α) = m (α(x )?α(x )) = 0, k k k?1 k=1 1 1 ˉ f(x)dα(x) = f(x)dα(x), f(x) S ?1 ?1 8. α(x) (?∞,∞) ( ) L?S 1 E ?R , ∞ ∞ ? ? m E = inf m (a ,b ), (a ,b )?E . i i i i α α i=1 i=1 α α(b )≥α(b ?0),α(a )≤α(a + 0), i i i i ? |I | =α(b )?α(a )≥α(b ?0)?α(a +0) =m (a ,b ), i i i i i i i α ∞ ∞ ∞ ∞ ? I = (a ,b )?E, m (a ,b )≤ |I|, i i i i i i α i=1 i=1 i=1 i=1 ∞ ∞ ? ? inf m (a ,b ) ≤ inf |I| =m E, i i i α α i=1 i=1 5′′′′′??′′′ ∞ (a ,b )?E, i i i=1 ∞ ∞ ? ? ? m (a ,b )≥m (a ,b ) ≥m E, i i i i α α α i=1 i=1 ∞ ∞ ? ? inf m (a ,b ), (a ,b )?E ≥m E. i i i i α α i=1 i=1 α(x) α (x). ? ? x, α(x?0) =α (x?0),α(x+0) =α (x+0), m (a ,b ) =m (a ,b ). i i i i α α 1 E ?R , ∞ ∞ ? ? m E = inf m (a ,b ), (a ,b )?E i i i i α α i=1 i=1 ∞ ∞ = inf (α(b ?0),α(a +0)), (a ,b )?E i i i i i=1 i=1 ∞ ∞ = inf (α (b ?0),α (a +0)), (a ,b )?E i i i i i=1 i=1 ∞ ∞ ? = inf m (a ,b ), (a ,b )?E i i i i α i=1 i=1 ? =m E. α L?S L?S α L?S L?S L?S α(x) L?S 6 |
|
|
|
|
|
|
|
|
|
|