二、知识概念: 1、基本概念: 2、基本性质:
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等.
①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
①点P(X,Y)关于X轴对称的点的坐标为 ②点P(X,Y)关于Y轴对称的点的坐标为
①等腰三角形两腰相等. ②等腰三角形两底角相等(等边对等角). ③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条).
①等边三角形三边都相等. ②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一. ④等边三角形是轴对称图形,对称轴是三线合一(3条)。
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 3、基本判定: ⑴等腰三角形的判定: ①有两条边相等的三角形是等腰三角形. ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边)。 ⑵等边三角形的判定: ①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4、基本方法: ⑴做已知直线的垂线: ⑵做已知线段的垂直平分线: ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形: ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短 1、轴对称的性质与应用 已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数. 2、等腰三角形的综合应用 如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH. (1)如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜想,并加以证明: (2)填空:若∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=______.点P到AB边的距离PE=________. 1、【思路点拨】求周长最小,利用轴对称的性质,找到P的对称点来确定A、B的位置,角度的计算,可以通过三角形内角和定理和等腰三角形的性质计算. 【答案与解析】 将实际问题抽象或转化为几何模型,将周长的三条线段的和转化为一条线段,这样取得周长的最小值. 2、 【答案】7;4或10; 【解析】 本题考查了等腰三角形的性质与三角形的面积,难度适中,运用面积证明可使问题简便,(2)中分情况讨论是解题的关键. 完 ▎编辑:小名老师 |
|