配色: 字号:
ADM3051CRZ-REEL7-ASEMI代理ADI数据手册
2023-04-21 | 阅:  转:  |  分享 
  


High Speed Industrial CAN Transceiver

with Bus Protection for 24 V Systems

Data Sheet

ADM3051





Rev. A Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no

responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other

rights of third parties that may result from its use. Specifications subject to change without notice. No

license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Trademarks and registered trademarks are the property of their respective owners.







One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781.329.4700 ?2011–2016 Analog Devices, Inc. All rights reserved.

Technical Support www.analog.com

FEATURES

Physical layer CAN transceiver

5 V operation on VCC

Complies with ISO 11898 standard

High speed data rates up to 1 Mbps

Short-circuit protection on CANH and CANL against shorts to

power/ground in 24 V systems

Unpowered nodes do not disturb the bus

Connect 110 or more nodes on the bus

Slope control for reduced EMI

Thermal shutdown protection

Low current standby mode

Industrial operating temperature range (?40°C to +125°C)

Available in 8-lead SOIC package

APPLICATIONS

CAN data buses

Industrial field networks

DeviceNet applications

CanOpen, CanKingdom

FUNCTIONAL BLOCK DIAGRAM

ADM3051

TxD

RS

RxD

V

REF

V

CC

MODE

THERMAL

SHUTDOWN

VOLTAGE

REFERENCE

D

R

CANH

CANL

GND 100

29-

0

01



Figure 1.

GENERAL DESCRIPTION

The ADM3051 is a controller area network (CAN) physical

layer transceiver allowing a protocol layer CAN controller to

access the physical layer bus. The ADM3051 complies with

the ISO 11898 standard. It is capable of running at data rates up

to 1 Mbps.

The device has current-limiting and thermal shutdown features

to protect against output short circuits and situations where the

bus may be shorted to ground or power terminals in 24 V bus

power systems. The part is fully specified over the industrial

temperature range of ?40°C to +125°C and is available in an

8-lead SOIC package.

Three operating modes are available: high speed, slope control,

and standby. Pin 8 (RS) is used to select the operating mode.

The low current standby mode can be selected by applying a

logic high to RS.

The device can be set to operate with slope control to limit EMI

by connecting RS with a resistor to ground to modify the rise

and fall of slopes. This mode facilitates the use of unshielded

cables. Alternatively, disabling slope control by connecting RS

to ground allows high speed operation. Shielded cables or other

measures to control EMI are necessary in this mode.





ADM3051 Data Sheet



Rev. A | Page 2 of 16

TABLE OF CONTENTS

Features .............................................................................................. 1?

Applications ....................................................................................... 1?

Functional Block Diagram .............................................................. 1?

General Description ......................................................................... 1?

Revision History ............................................................................... 2?

Specifications ..................................................................................... 3?

Timing Specifications .................................................................. 4?

Absolute Maximum Ratings ............................................................ 5?

ESD Caution .................................................................................. 5?

Pin Configuration and Function Descriptions ............................. 6?

Typical Performance Characteristics ..............................................7?

Test Circuits and Switching Characteristics ................................ 11?

Circuit Description......................................................................... 13?

CAN Transceiver Operation ..................................................... 13?

Operational Modes .................................................................... 13?

Truth Tables................................................................................. 13?

Thermal Shutdown .................................................................... 13?

Applications Information .............................................................. 14?

Outline Dimensions ....................................................................... 15?

Ordering Guide .......................................................................... 15?



REVISION HISTORY

5/2016—Rev.0 to Rev. A

Changes to Ordering Guide .......................................................... 15



9/2011—Revision 0: Initial Version



Data Sheet ADM3051



Rev. A | Page 3 of 16

SPECIFICATIONS

All voltages relative to ground (Pin 2); 4.5 V ≤ VCC ≤ 5.5 V. TA = ?40°C to +125°C, RL = 60 Ω, IRS > ?10 μA, unless otherwise noted. All

typical specifications are at TA = 25°C, VCC = 5 V, unless otherwise noted.

Table 1.

Parameter Symbol Min Typ Max Unit Test Conditions/Comments

SUPPLY CURRENT ICC

Dominant State 78 mA VTxD = 1 V

Recessive State 10 mA VTxD = 4 V; RSLOPE = 47 kΩ

Standby State 275 μA VRS = VCC, ITxD = IRxD = IVREF = 0 mA, TA < 90°C

DRIVER

Logic Inputs

Input Voltage High VIH 0.7 VCC VCC + 0.3 V Output recessive

Input Voltage Low VIL ?0.3 +0.3 VCC V Output dominant

CMOS Logic Input Current High IIH ?200 +30 μA VTxD = 4 V

CMOS Logic Input Current Low IIL ?100 ?600 μA VTxD = 1 V

Differential Outputs

Recessive Bus Voltage VCANH, VCANL 2.0 3.0 V VTxD = 4 V, RL = ∞, see Figure 23

Off-State Output Leakage Current ILO ?2 +2 mA ?2 V < (VCANL, VCANH) < 7 V

ILO ?10 +10 mA ?5 V < (VCANL, VCANH) < 36 V

CANH Output Voltage VCANH 3.0 4.5 V VTxD = 1 V, see Figure 23

CANL Output Voltage VCANL 0.5 2.0 V VTxD = 1 V, see Figure 23

Differential Output Voltage VOD 1.5 3.0 V VTxD = 1 V, see Figure 23

VOD 1.5 V VTxD = 1 V, RL = 45 Ω, see Figure 23

OD ?500 +50 mV VTxD = 4 V, RL = ∞, see Figure 23

Short-Circuit Current, CANH ISCCANH ?200 mA VCANH = ?5 V

ISCCANH ?100 mA VCANH = ?36 V

Short-Circuit Current, CANL ISCCANL 200 mA VCANL = 36 V

RECEIVER

Differential Inputs

Voltage Recessive VIDR ?1.0 +0.5 V ?2 V < VCANL, VCANH <7 V, see Figure 25,

VCC = 4.75 V to 5.25 V, CL = 30 pF

?1.0 +0.4 ?7 V < VCANL, VCANH <12 V, see Figure 25,

CL = 30 pF

Voltage Dominant VIDD 0.9 5.0 V ?2 V < VCANL, VCANH <7 V, see Figure 25,

VCC = 4.75 V to 5.25 V, CL = 30 pF

1.0 5.0 ?7 V < VCANL, VCANH <12 V, see Figure 25,

CL = 30 pF

1



Input Voltage Hysteresis VHYS 150 mV See Figure 26

CANH, CANL Input Resistance RIN 5 25 kΩ

Differential Input Resistance RDIFF 20 100 kΩ

Logic Outputs

Output Voltage High VOH 0.8 VCC VCC V IOUT = ?100 μA

Output Voltage Low VOL 0 0.2 VCC V IOUT = 1 mA

VOL 0 1.5 V IOUT = 10 mA

Short-Circuit Current |IOS| 120 mA VOUT = GND or VCC

VOLTAGE REFERENCE

Reference Output Voltage VREF 2.025 3.025 V VRS = 1 V, |IREF| = 50 μA

REF 0.4 VCC 0.6 VCC V VRS = 4 V, |IREF| = 5 μA

STANDBY/SLOPE CONTROL

Input Voltage for Standby Mode VSTB 0.75 VCC V

Current for Slope Control Mode ISLOPE ?10 ?200 μA

Slope Control Mode Voltage VSLOPE 0.4 VCC 0.6 VCC V



1

In standby, VCC = 4.75 V to 5.25 V.



ADM3051 Data Sheet



Rev. A | Page 4 of 16

TIMING SPECIFICATIONS

All voltages are relative to ground (Pin 2); 4.5 V ≤ VCC ≤ 5.5 V. TA = ?40°C to +125°C, unless otherwise noted.

Table 2.

Parameter Symbol Min Typ Max Unit Test Conditions/Comments

DRIVER

Maximum Data Rate 1 Mbps VRS = 1 V

Propagation Delay from TxD On to Bus

Active

tonTxD 50 ns VRS = 1 V, RL = 60 Ω, CL = 100 pF, see Figure 24,

Figure 27

Propagation Delay from TxD Off to Bus

Inactive

toffTxD 40 80 ns VRS = 1 V, RL = 60 Ω, CL = 100 pF, see Figure 24,

Figure 27

RECEIVER

Propagation Delay from TxD On to

Receiver Active

tonRxD 55 120 ns VRS = 1 V, RL = 60Ω, CL = 100 pF, see Figure 24,

Figure 27

440 600 ns RSLOPE = 47 kΩ, RL = 60 Ω, CL = 100 pF, see Figure 24,

Figure 27

Propagation Delay from TxD Off to

Receiver Inactive

toffRxD 90 190 ns RSLOPE = 0 Ω, RL = 60 Ω, CL = 100 pF, see Figure 24,

Figure 27

290 400 ns RSLOPE = 47 kΩ, RL = 60 Ω, CL = 100 pF, see Figure 24,

Figure 27

Bus Dominant to RxD Low tdRxDL 3 μs VRS = 4 V, VTxD = 4 V, RL = 60 Ω, CL = 100 pF, see

Figure 24, Figure 29

CANH, CANL Slew Rate |SR| 7 V/μs RSLOPE = 47 kΩ, RL = 60 Ω, CL = 100 pF, see Figure 24,

Figure 27

TIME TO WAKE-UP FROM STANDBY tWAKE 20 μs VTxD = 1 V, see Figure 28







Data Sheet ADM3051



Rev. A | Page 5 of 16

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter Rating

VCC ?0.3 V to +7 V

Digital Input Voltage

TxD ?0.3 V to VCC + 0.3 V

Digital Output Voltage

RxD ?0.3 V to VCC + 0.3 V

CANH, CANL ?36 V to +36 V

VREF ?0.3 V to VCC + 0.3 V

RS ?0.3 to VCC + 0.3 V

Operating Temperature Range ?40°C to +125°C

Storage Temperature Range ?55°C to +150°C

ESD (Human Body Model) on All Pins 4 kV

Lead Temperature

Soldering (10 sec) 300°C

Vapor Phase (60 sec) 215°C

Infrared (15 sec) 220°C

θJA Thermal Impedance 110°C/W

TJ Junction Temperature 150°C

Stresses at or above those listed under Absolute Maximum

Ratings may cause permanent damage to the product. This is a

stress rating only; functional operation of the product at these

or any other conditions above those indicated in the operational

section of this specification is not implied. Operation beyond

the maximum operating conditions for extended periods may

affect product reliability.



ESD CAUTION













ADM3051 Data Sheet



Rev. A | Page 6 of 16

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

TxD 1

GND 2

V

CC

3

RxD 4

RS8

CANH7

CANL6

V

REF

5

ADM3051

TOP VIEW

(Not to Scale)

100

29

-

0

09



Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin No. Mnemonic Description

1 TxD Driver Input Data.

2 GND Ground.

3 VCC Power Supply. This pin requires a decoupling capacitor to GND of 100 nF.

4 RxD Receiver Output Data.

5 VREF Reference Voltage Output.

6 CANL Low Level CAN Voltage Input/Output.

7 CANH High Level CAN Voltage Input/Output.

8 RS Slope Resistor Input.







Data Sheet ADM3051



Rev. A | Page 7 of 16

TYPICAL PERFORMANCE CHARACTERISTICS

90

83

–50 125

P

RO

P

AG

AT

I

O

N

DE

L

AY

T

x

D O

N T

O

RE

CE

I

V

E

R ACT

I

V

E

,

t

onRx

D

(n

s

)

TEMPERATURE (°C) 10

02

9-

01

0

84

85

86

87

88

89

–25 0 25 50 75 100

Figure 3. Propagation Delay from TxD On to Receiver Active vs. Temperature

92

80

4.5 5.5

P

RO

P

AG

AT

I

O

N

DE

L

AY

T

x

D O

N T

O

RE

CE

I

V

E

R ACT

I

V

E

,

t

onRx

D

(n

s

)

SUPPLY VOLTAGE (V) 10

02

9-

01

1

84

82

86

88

90

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4

Figure 4. Propagation Delay from TxD On to Receiver Active vs. Supply

Voltage

500

150

–50 125

P

RO

P

AG

AT

I

O

N DE

L

AY

T

x

D O

N

T

O

RE

CE

I

V

E

R AC

T

I

V

E



(

S

L

O

P

E

M

O

DE

)

,

t

onRx

D

(n

s

)

TEMPERATURE (°C)

10

02

9-

0

12

200

250

300

350

400

450

–25 0 25 50 75 100

Figure 5. Propagation Delay (Slope Control Mode, RSLOPE = 47 kΩ) from TxD

On to Receiver Active vs. Temperature

560

400

420

440

460

4.5 5.5

P

RO

P

AG

AT

I

O

N

D

E

L

A

Y

T

x

D

O

N



T

O

R

EC

EI

VER



A

C

T

I

VE (SL

O

PE MO

D

E),

t

onRx

D

(n

s

)

SUPPLY VOLTAGE (V) 10

0

2

9-

0

1

3

500

480

520

540

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4

Figure 6. Propagation Delay (Slope Control Mode, RSLOPE = 47 kΩ) from TxD

On to Receiver Active vs. Supply Voltage

180

0

–50 125

P

R

OP

A

G

A

TION

D

E

LA

Y



Tx

D

OFF TO

RE

C

E

I

V

E

R

I

N

AC

T

I

V

E

,

t

o

ffR

x

D

(n

s)

TEMPERATURE (°C) 1

0029

-

014

60

40

20

80

100

120

140

160

–25 0 25 50 75 100

Figure 7. Propagation Delay from TxD Off to Receiver Inactive vs.

Temperature

160

100

110

4.5 5.5

P

R

OP

A

G

A

TION

D

E

LA

Y



Tx

D

OFF TO

RE

C

E

I

V

E

R

I

N

AC

T

I

V

E

,

t

o

ffR

x

D

(n

s)

SUPPLY VOLTAGE (V) 1

0029

-

015

120

150

140

130

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4

Figure 8. Propagation Delay from TxD Off to Receiver Inactive vs. Supply

Voltage

ADM3051 Data Sheet



Rev. A | Page 8 of 16

350

0

50

150

100

–50 125

P

RO

P

AG

AT

I

O

N

DE

L

AY



T

x

D O

F

F

T

O

RE

CE

I

V

E

R I

N

ACT

I

V

E



(

S

L

O

P

E

M

O

DE

)

,

t

o

ffR

x

D

(n

s

)

TEMPERATURE (°C)

10

02

9-

01

6

200

250

300

–25 0 25 50 75 100

Figure 9. Propagation Delay (Slope Control Mode, RSLOPE = 47 kΩ) from TxD

Off to Receiver Inactive vs. Temperature

315

270

4.5 5.5

P

R

O

P

AG

AT

I

O

N

DE

L

A

Y



T

x

D O

F

F

T

O

RE

CE

I

V

E

R

I

NAC

T

I

V

E

(

S

L

O

P

E

M

O

D

E

)

,

t

of

f

R

x

D

(n

s

)

SUPPLY VOLTAGE (V) 10

0

2

9-

0

1

7

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4

275

280

285

290

295

300

305

310



Figure 10. Propagation Delay (Slope Control Mode, RSLOPE = 47 kΩ) from TxD

Off to Receiver Inactive vs. Supply Voltage

184

166

–50 125

R

EC

EI

VER



I

N

PU

T

H

YST

ER

ESI

S (mV)

TEMPERATURE (°C) 1

0029

-

018

–25 0 25 50 75 100

168

170

172

174

176

178

180

182

Figure 11. Receiver Input Hysteresis vs. Temperature

35

0

5

15

10

–50 125

P

RO

P

AG

AT

I

O

N DE

L

AY

F

RO

M

T

x

D

O

F

F



T

O

BUS

I

NACT

I

V

E

,

t

o

ffT

x

D

(n

s

)

TEMPERATURE (°C)

10

02

9-

01

9

20

25

30

–25 0 25 50 75 100

Figure 12. Propagation Delay from TxD Off to Bus Inactive vs. Temperature

29.0

24.5

4.5 5.5

P

R

OP

A

G

A

TION

D

E

LA

Y



FR

O

M

Tx

D



OFF TO

B

U

S I

N

A

C

T

I

VE,

t

of

f

Tx

D

(n

s

)

SUPPLY VOLTAGE (V) 1

0029-

0

20

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5



Figure 13. Propagation Delay from TxD Off to Bus Inactive vs. Supply Voltage

41

33

–50 125

P

RO

P

AG

AT

I

O

N DE

L

AY

F

RO

M

T

x

D

O

N

T

O

BU

S

ACT

I

V

E

,

t

onTx

D

(ns

)

TEMPERATURE (°C) 10

02

9-

02

1

–25 0 25 50 75 100

34

35

36

37

38

39

40

Figure 14. Propagation Delay from TxD On to Bus Active vs. Temperature

Data Sheet ADM3051



Rev. A | Page 9 of 16

45

0

4.5 5.5

P

R

O

P

AG

AT

I

O

N

DE

L

A

Y



F

R

O

M

T

x

D O

N



T

O

BU

S

AC

T

I

V

E

,

t

on

Tx

D

(n

s

)

SUPPLY VOLTAGE (V) 1

0029

-

022

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4

5

10

15

20

25

30

35

40

Figure 15. Propagation Delay from TxD On to Bus Active vs. Supply Voltage

42

30

125 1000

S

UP

P

L

Y

CURRE

NT

,

I

CC

(m

A

)

DATA RATE (kbps) 10

02

9-

02

3

32

34

36

38

40

250 375 500 625 750 875

Figure 16. Supply Current (ICC) vs. Data Rate

2.410

2.355

DRI

V

E

R DI

F

F

E

RE

NT

I

A

L



O

UT

P

UT

V

O

L

T

AG

E

DO

M

I

NANT

,

V

OD

(V

)

TEMPERATURE (°C) 10

029

-

02

4

2.360

2.365

2.370

2.375

2.380

2.385

2.390

2.395

2.400

2.405

–50 125–25 0 25 50 75 100

Figure 17. Driver Differential Output Voltage Dominant vs. Temperature

3.0

0

4.5 5.5

D

R

I

VER

D

I

F

F

ER

E

N

T

I

A

L

O

U

T

PU

T

VO

L

T

A

G

E

DO

M

I

N

ANT

,

V

OD

(V

)

SUPPLY VOLTAGE (V) 10

02

9-

02

5

1.0

0.5

1.5

2.0

2.5

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4

Figure 18. Driver Differential Output Voltage Dominant vs. Supply Voltage

4.9915

4.9875

–50 125

R

E

C

E

IV

E

R

O

U

TP

U

T

H

I

GH

V

O

LTA

G

E

,

V

OH

(V)

TEMPERATURE (°C) 100

29-

02

6

–25 0 25 50 75 100

4.9880

4.9885

4.9890

4.9895

4.9900

4.9905

4.9910

I

OUT

= –100μA

Figure 19. Receiver Output High Voltage vs. Temperature

0.45

0

–50 125

RE

CE

I

V

E

R O

UT

P

UT

L

O

W

V

O

L

T

AG

E

(I

OU

T

= 10

m

A

)

,

V

OL

(V

)

TEMPERATURE (°C) 10

02

9-

0

27

–25 0 25 50 75 100

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

I

OUT

= 10mA

I

OUT

= 1mA

Figure 20. Receiver Output Low Voltage vs. Temperature

ADM3051 Data Sheet



Rev. A | Page 10 of 16

2.80

2.40

–50 125

R

E

FE

R

E

N

C

E

V

O

LTA

GE

,

V

REF

(V

)

TEMPERATURE (°C) 1

0029-

0

30

–25 0 25 50 75 100

2.45

2.50

2.55

2.60

2.65

2.70

2.75

I

REF

= +50μA

I

REF

= –50μA

I

REF

= +5μA

I

REF

= –5μA

Figure 21. VREF vs. Temperature

50

45

40

35

30

25

20

15

10

5

0

0 1020304050607080

SL

EW

R

A

T

E

(V/

μ

s

)

RESISTANCE, R

S

(k?)

1

002

9-

1

01

Figure 22. Driver Slew Rate vs. Resistance, RSLOPE





Data Sheet ADM3051



Rev. A | Page 11 of 16

TEST CIRCUITS AND SWITCHING CHARACTERISTICS

TxD V

OD

V

CANH

V

CANL

V

OC

R

L

R

L

2

2

1002

9-

002

CANH

CANL

Figure 23. Driver Voltage Measurements

CANH

CANL

TxD

RxD

C

L

R

L

30pF

1002

9-

003



Figure 24. Switching Characteristics Measurements



C

L

RxD

CANH

CANL

V

ID

100

29-

006

Figure 25. Receiver Voltage Measurements

0.5 0.9

V

RxD

HIGH

LOW

V

HYS

V

ID

(V)

10

029-

0

04

Figure 26. Receiver Input Hysteresis



0.3V

CC

0.9V

V

OR

V

OD

0V

0V

V

CC

0.5V

0.3V

CC

V

DIFF

RxD

V

CC

TxD

0.7V

CC

0.7V

CC

V

DIFF

= V

CANH

– V

CANL

t

onTxD

t

offTxD

t

onRxD

t

offRxD

10

029

-

007



Figure 27. Driver and Receiver Propagation Delay



10

02

9-

0

08

NOTES:

1. TxD = 0V

V

CC

V

CC

RS

RxD

0V

0V

t

WAKE



Figure 28. Wake-Up Delay Returning from Standby Mode

ADM3051 Data Sheet



Rev. A | Page 12 of 16



V

DIFF

RxD

V

DIFF

= V

CANH

– V

CANL

t

dRxDL

0V

1.5V

0V

V

CC

10

029-

005NOTES:

1. RS = 4V (STANDBY MODE)

2. TxD = 4V



Figure 29. Bus Dominant to RxD Low (Standby Mode)















Data Sheet ADM3051



Rev. A | Page 13 of 16

CIRCUIT DESCRIPTION

CAN TRANSCEIVER OPERATION

A CAN bus has two states: dominant and recessive. A dominant

state is present on the bus when the differential voltage between

CANH and CANL is greater than 0.9 V. A recessive state is

present on the bus when the differential voltage between CANH

and CANL is less than 0.5 V. During a dominant bus state, the

CANH pin is high and the CANL pin is low. During a recessive

bus state, both the CANH and CANL pins are in the high

impedance state.

The driver drives CANH high and CANL low (dominant state)

if a logic low is present on TxD. If a logic high is present on

TxD, the driver output is placed in a high impedance state

(recessive state). The driver output states are shown in Table 7.

The receiver output is low if the bus is in the dominant state and

high if the bus is in the recessive state. If the differential voltage

between CANH and CANL is between 0.5 V and 0.9 V, the bus

state is indeterminate and the receiver output may be high or

low. The receiver output states for given inputs are listed in

Table 8.

OPERATIONAL MODES

Three modes of operation are available: high speed, slope

control, and standby. RS (Pin 8) allows modification of the

operational mode by connecting the RS input through a resistor

to ground, or directly to ground, or to a CAN controller, as

shown in Figure 30.

With RS connected to ground, the output transistors switch on

and off at the maximum rate possible in high speed mode, with

no modification to the rise and fall slopes. EMI in this mode

can be alleviated using shielded cables.

Alternatively, connecting RS to a resistor, RSLOPE, allows

slope control mode, with the value of the resistor modifying

the rise and fall slopes. The reduced EMI allows the use of

unshielded cables.

Applying a logic high to RS initiates a low current standby mode.

The transmitter is disabled, and the receiver is connected to a

low current. RxD goes low upon receiving dominant bits, allowing

an attached microcontroller that detects this to wake the

transceiver via Pin 8, which returns it to standard operation.

The receiver is slower in standby mode and loses the first

message at higher bit rates.

Table 5. Mode Selection Using RS Pin (Pin 8)

Mode Condition to Force

Resulting

Voltage/Current

Standby VRS > 0.75 VCC ?IRS < 10 μA

Slope Control 10 μA < ?IRS < 200 μA 0.4 VCC < VRS < 0.6 VCC

High Speed VRS < 0.3 VCC ?IRS < ?500 μA

TRUTH TABLES

The truth tables in this section use the abbreviations found in

Table 6.

Table 6. Truth Table Abbreviations

Letter Description

H High level

L Low level

X Don’t care

I Indeterminate

Z High impedance (off)

NC Disconnected

Table 7. Transmitting

Supply Input Outputs

VCC TxD State CANH CANL

On L Dominant H L

On H Recessive Z Z

On Z Recessive Z Z

Off X Z Z Z

Table 8. Receiving

Supply Inputs Output

VCC VID = CANH ? CANL Bus State RxD

On ≥0.9 V Dominant L

On ≤0.5 V Recessive H

On 0.5 V < VID < 0.9 V I I

On Inputs open Recessive H

Off X X I

THERMAL SHUTDOWN

The ADM3051 contains thermal shutdown circuitry that

protects the part from excessive power dissipation during fault

conditions. Shorting the driver outputs to a low impedance

source can result in high driver currents. The thermal sensing

circuitry detects the increase in die temperature under this

condition and disables the driver outputs. The design of this

circuitry ensures the disabling of driver outputs upon reaching

a die temperature of 150°C. As the device cools, reenabling of

the drivers occurs at a temperature of 140°C.

















ADM3051 Data Sheet



Rev. A | Page 14 of 16

APPLICATIONS INFORMATION

ADM3051

TxD

RS

RxD

V

REF

V

CC

R

T

/2 R

T

/2

R

T

/2 R

T

/2

MODE

THERMAL

SHUTDOWN

CAN

CONTROLLER

VOLTAGE

REFERENCE

D

R

CANH

CANL

GND

100nF

100nF

+5V SUPPLY

+5V SUPPLY

R

SLOPE

C

T

C

T

1002

9-

0

28

NOTES

1. R

T

IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.

BUS

CONNECTOR



Figure 30. Typical CAN Node Using the ADM3051



ADM3051

TxD RxD

D

R

CANH CANL

10

029-

029

NOTES

1. MAXIMUM NUMBER OF NODES: 110.

2. R

T

IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.

ADM3051

TxD RxD

D

R

CANH CANL

ADM3051

TxD RxD

D

R

CANH CANL

R

T

/2

R

T

/2

R

T

/2

R

T

/2

C

L

C

L



Figure 31. Typical CAN Network

Data Sheet ADM3051



Rev. A | Page 15 of 16

OUTLINE DIMENSIONS

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS

(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR

REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

COMPLIANT TO JEDEC STANDARDS MS-012-AA

01

2407-

A

0.25 (0.0098)

0.17 (0.0067)

1.27 (0.0500)

0.40 (0.0157)

0.50 (0.0196)

0.25 (0.0099)

45°





1.75 (0.0688)

1.35 (0.0532)

SEATING

PLANE

0.25 (0.0098)

0.10 (0.0040)

4

1

85

5.00 (0.1968)

4.80 (0.1890)

4.00 (0.1574)

3.80 (0.1497)

1.27 (0.0500)

BSC

6.20 (0.2441)

5.80 (0.2284)

0.51 (0.0201)

0.31 (0.0122)

COPLANARITY

0.10



Figure 32. 8-Lead Standard Small Outline Package [SOIC_N]

Narrow Body

(R-8)

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model

1

Temperature Range Package Description Package Option

ADM3051CRZ ?40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8

ADM3051CRZ-REEL7 ?40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8

EVAL-ADM3051EBZ Evaluation Board



1

Z = RoHS Compliant Part.



ADM3051 Data Sheet



Rev. A | Page 16 of 16

NOTES













?2011–2016 Analog Devices, Inc. All rights reserved. Trademarks and

registered trademarks are the property of their respective owners.

D10029-0-5/16(A)

献花(0)
+1
(本文系木子源野首藏)