配色: 字号:
IPB64N25S3-20-ASEMI代理英飞凌规格书
2023-05-16 | 阅:  转:  |  分享 
  
IPB64N25S3-20

OptiMOS

?

-T Power-Transistor

Features

? N-channel - Enhancement mode

? AEC qualified

? MSL1 up to 260°C peak reflow

? 175°C operating temperature

? Green Product (RoHS compliant)

? 100% Avalanche tested

Maximum ratings, at T

j

=25 °C, unless otherwise specified

Parameter Symbol Conditions Unit

Continuous drain current I

D

T

C

=25 °C, V

GS

=10 V 64 A

T

C

=100°C, V

GS

=10V

1)

46

Pulsed drain current

1)

I

D,pulse

T

C

=25°C 256

Avalanche energy, single pulse

1)

E

AS

I

D

=27A 270 mJ

Avalanche current, single pulse I

AS

- 27 A

Reverse diode dv /dt dv /dt 6kV/μs

Gate source voltage V

GS

-±20

Power dissipation P

tot

T

C

=25°C 300 W

Operating and storage temperature T

j

, T

stg

- -55 ... +175 °C

IEC climatic category; DIN IEC 68-1 - - 55/175/56

Value

V

DS

250 V

R

DS(on),max

20 m?

I

D

64 A

Product Summary

PG‐TO263‐3‐2

Type Package Marking

IPB64N25S3-20 PG-TO263-3-2 3PN2520

Rev. 1.1 page 1 2014-09-12

IPB64N25S3-20

Parameter Symbol Conditions Unit

min. typ. max.

Thermal characteristics

1), 3)

Thermal resistance, junction - case R

thJC

---0.5K/W

Thermal resistance, junction -

ambient, leaded

R

thJA

62

SMD version, device on PCB R

thJA

minimal footprint - - 62

6 cm

2

cooling area

2)

--40

Electrical characteristics, at T

j

=25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage V

(BR)DSS

V

GS

=0V, I

D

= 1mA 250 - - V

Gate threshold voltage V

GS(th)

V

DS

=V

GS

, I

D

=270μA 2.0 3.0 4.0

Zero gate voltage drain current I

DSS

V

DS

=250V, V

GS

=0V -0.11μA

V

DS

=250V, V

GS

=0V,

T

j

=125°C

2)

- 10 100

Gate-source leakage current I

GSS

V

GS

=20V, V

DS

=0V - 1 100 nA

Drain-source on-state resistance R

DS(on)

V

GS

=10V, I

D

=64A - 17.5 20

m?

Values

Rev. 1.1 page 2 2014-09-12

IPB64N25S3-20

Parameter Symbol Conditions Unit

min. typ. max.

Dynamic characteristics

1)

Input capacitance C

iss

- 5240 7000 pF

Output capacitance C

oss

- 2900 3900

Reverse transfer capacitance C

rss

- 85 170

Turn-on delay time t

d(on)

-18-ns

Rise time t

r

-20-

Turn-off delay time t

d(off)

-45-

Fall time t

f

-12-

Gate Charge Characteristics

1)

Gate to source charge Q

gs

-2431nC

Gate to drain charge Q

gd

-112

Gate charge total Q

g

-6789

Gate plateau voltage V

plateau

-4.8-V

Reverse Diode

Diode continous forward current

1)

I

S

--64A

Diode pulse current

1)

I

S,pulse

- - 256

Diode forward voltage V

SD

V

GS

=0V, I

F

=64A,

T

j

=25°C

-11.2V

Reverse recovery time

1)

t

rr

V

R

=125V, I

F

=50A,

di

F

/dt =100A/μs

- 174 - ns

Reverse recovery charge

1)

Q

rr

- 1095 - nC

Values

V

GS

=0V, V

DS

=25V,

f =1MHz

V

DD

=100V, V

GS

=10V,

I

D

=25A, R

G

=1.6?

V

DD

=200V, I

D

=64A,

V

GS

=0 to 10V

3)

Devices thermal performance determined according to EIA JESD 51-14

"Transient Dual Interface Test Method For The Measurement Of The Thermal Resistance"

1)

Defined by design. Not subject to production test.

T

C

=25°C

2)

Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 μm thick) copper area for drain

connection. PCB is vertical in still air.

Rev. 1.1 page 3 2014-09-12

IPB64N25S3-20

1 Power dissipation 2 Drain current

P

tot

= f(T

C

); V

GS

≥ 6 V I

D

= f(T

C

); V

GS

≥ 6 V; SMD

3 Safe operating area 4 Max. transient thermal impedance

I

D

= f(V

DS

); T

C

= 25 °C; D = 0; SMD Z

thJC

= f(t

p

)

parameter: t

p

parameter: D =t

p

/T

1 μs

10 μs

100 μs

1 ms

1

10

100

1000

0.1 1 10 100 1000

I

D

[A

]

V

DS

[V]

single pulse

0.01

0.05

0.1

0.5

10

-6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

10

-3

10

-2

10

-1

10

0

Z

th

JC

[K/W]

t

p

[s]

0

50

100

150

200

250

300

350

0 50 100 150 200

P

tot

[W]

T

C

[°C]

0

20

40

60

80

0 50 100 150 200

I

D

[A

]

T

C

[°C]

Rev. 1.1 page 4 2014-09-12

IPB64N25S3-20

5 Typ. output characteristics 6 Typ. drain-source on-state resistance

I

D

= f(V

DS

); T

j

= 25 °C; SMD R

DS(on)

= f(I

D

); T

j

= 25 °C; SMD

parameter: V

GS

parameter: V

GS

7 Typ. transfer characteristics 8 Typ. drain-source on-state resistance

I

D

= f(V

GS

); V

DS

= 6V R

DS(on)

= f(T

j

); I

D

= 64 A; V

GS

= 10 V; SMD

parameter: T

j

5

15

25

35

45

55

-60 -20 20 60 100 140 180

R

DS(o

n

)

[m

?

]

T

j

[°C]

5.5 V

6 V

10 V

0

50

100

150

200

250

0246810

I

D

[A

]

V

DS

[V]

4.5 V

5 V

5.5 V

6 V

10 V

15

17

19

21

23

25

0 102030405060

R

DS(

on)

[m

?

]

I

D

[A]

-55 °C

25 °C

175 °C

0

32

64

96

128

160

192

224

256

34567

I

D

[A

]

V

GS

[V]

Rev. 1.1 page 5 2014-09-12

IPB64N25S3-20

9 Typ. gate threshold voltage 10 Typ. capacitances

V

GS(th)

= f(T

j

); V

GS

= V

DS

C = f(V

DS

); V

GS

= 0 V; f = 1 MHz

parameter: I

D

11 Typical forward diode characteristicis 12 Avalanche characteristics

IF = f(V

SD

) I

A S

= f(t

AV

)

parameter: T

j

parameter: T

j(start)

25 °C175 °C

10

0

10

1

10

2

10

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

I

F

[A

]

V

SD

[V]

27 μA

270 μA

1.5

2

2.5

3

3.5

4

-60 -20 20 60 100 140 180

V

GS

(th

)

[V]

T

j

[°C]

Ciss

Coss

Crss

10

2

10

3

10

4

0 50 100 150 200 250

C

[

pF]

V

DS

[V]

10

1

25 °C

100 °C

150 °C

1

10

100

1 10 100

I

AV

[A

]

t

AV

[μs]

25 °C175 °C

10

0

10

1

10

2

I

F

[A

]

Rev. 1.1 page 6 2014-09-12

IPB64N25S3-20

13 Avalanche energy 14 Drain-source breakdown voltage

E

AS

= f(T

j

) V

BR(DSS)

= f(T

j

); I

D

= 270 μA

parameter: I

D

15 Typ. gate charge 16 Gate charge waveforms

V

GS

= f(Q

gate

); I

D

= 64 A pulsed

parameter: V

DD

V

GS

Q

gate

V

gs(th)

Q

g(th)

Q

gs

Q

gd

Q

sw

Q

g

230

235

240

245

250

255

260

265

270

275

280

-60 -20 20 60 100 140 180

V

BR(

DSS)

[V]

T

j

[°C]

80 V

200 V

0

1

2

3

4

5

6

7

8

9

10

020406080

V

GS

[V

]

Q

gate

[nC]

27 A

13.5 A

6.75 A

0

200

400

600

800

1000

1200

25 75 125 175

E

AS

[m

J

]

T

j

[°C]

Rev. 1.1 page 7 2014-09-12

IPB64N25S3-20

Published by

Infineon Technologies AG

81726 Munich, Germany

? Infineon Technologies AG 2014

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions

or characteristics. With respect to any examples or hints given herein, any typical values stated

herein and/or any information regarding the application of the device, Infineon Technologies hereby

disclaims any and all warranties and liabilities of any kind, including without limitation, warranties

of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact

the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances.

For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the

express written approval of Infineon Technologies, if a failure of such components can reasonably be

expected to cause the failure of that life-support device or system or to affect the safety or

effectiveness of that device or system. Life support devices or systems are intended to be implanted

in the human body or to support and/or maintain and sustain and/or protect human life.

If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Rev. 1.1 page 8 2014-09-12

IPB64N25S3-20

Revision History

Version

Revision 1.0

Revision 1.1

Date

2012-10-18

2014-09-12

Changes

Final Data Sheet

Through-hole parts removed

Rev. 1.1 page 9 2014-09-12

献花(0)
+1
(本文系木子源野首藏)